This project will reduce sediment to the Minnesota River, control erosion and reduce sedimentation in a local DNR Protected Water and protect private land and public infrastructure. The County Road (CR) 6 ravine (Quarry Creek) cuts through the Minnesota River valley bluff in Blakeley Township. Active channel incision and erosion within the ravine has caused large amounts of sediment to be deposited under the bridge at CR 6 such that the road is frequently flooded and sediment has to be removed several times a year.
Pond enhancement project to repair and expand an existing man made pond to improve outdoor recreational opportunities for park visitors that use the pond for fishing, boating and wildlife viewing.
Given access to resources & training, educators are in powerful positions to share stories of the people living on the land we call Minnesota. Through the work of Dr. Mato Nunpa, a team of Indigenous scholars & community interviews, Speaking Out Collective will examine how mass murder, wholesale land theft, enslavement and extermination were justified and taught in schools. By centering silenced Indigenous narratives, this project invites students, educators & districts to reconsider MN history.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
High sediment levels in streams are prevalent throughout South Eastern Minnesota. Installing proven and cost-effective conservation practices that collectively reverse these impairments while also meeting flood protection and ecosystem support goals are needed. The purpose of this project is to design, construct, and maintain two retention structures and restore approximately one mile of failed stream bank. This project integrates objectives of Olmsted County, the Department of Natural Resources and City of Rochester into a common project.
Development of regional trail master plans for the Southern Scott Regional Trail Search Corridor (from Cedar Lake Farm to Cleary Lake Regional Park) and the Louisville Regional Trail Search Corridor including consulting services to prepare the master plans and facilitate a public engagement process.
Minnesota Trout Unlimited, the Minnesota Land Trust, The Nature Conservancy, and Trust for Public Land will combine their expertise in six targeted watersheds to increase the resilience of remnant populations of brook trout unique to Southeast Minnesota. We will protect and enhance habitat in floodplains, along gullies, above steep slopes, and on bluffs to slow runoff, increase infiltration, and keep aquatic habitat productive.
This project will complete the final Implementation Plan, semi-annual and final reports and hold project meetings. The Implementation Plan will identify target areas and priorities for implementation strategies to improve water quality for Bluff Creek. This project will build the groundwork so Bluff Creek will meet water quality standards for aquatic life in the future.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
This grant will fund about 80 project in six sub-watersheds (Headwaters of the Middle & South Branch, Money Creek, Headwaters of Upper Iowa River, Mill Creek, south Fork Root River, and Carey Creek). Projects to include grassed waterways, water and sediment control basins, grade stabilization structures, livestock waste projects, streambank projects and cover crops. Funding will also support staff time for project development and technical assistance for the cost-share projects.
This grant will fund an expected 44 projects in 4 subwatersheds (South Fork Root River, Crooked Creek, Rush-Pine and portions of the headwaters of the Middle and South Branch Root) and 2 DWSMAS (Chatfield and Utica). Projects include grassed waterways, WASCOBs, grade stabilization structures and cover crops, plus field walkovers, project development, and technical assistance. The anticipated sediment reduction from this work will be 2,285.5 tons, or 2.2% of the 10-year goal for the entire planning area.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
This goal of this project is improving water quality and expanding critical wildlife habitat by permanently restoring and enhancing wetlands in the Sand Creek and Prior/Spring Lake Watersheds. By making sign-up payments available through this grant, this project will restore or enhance 400 to 500 acres of wetlands moderating flows and improving water quality. The NRCS has committed $2.5 million through the Wetland Reserve Enhancement Program (WREP), the Scott WMO $314,000, the PLSLWD $145,000, Rice SWCD $40,000, Le Sueur SWCD $40,000, and the Scott SWCD $75,000.
The Somali community in Rochester, MN, is one of the most connected cultural groups in the region.
Our project hopes to untangle the rich culture that is often hidden from the public sphere in Rochester,
Unity begins with knowing your neighbors. MN. Through the Humanities Center's Cultural Grant, we will
implement a program to inform and teach our fellow neighbors about the Somali culture. Our platform will be based on speakers, multimedia, tv
programming, and print.
Calcareous fens such as the Savage Fen are fragile ecosystems existing only under a unique combination of soil type, hydrology, chemistry, and vegetation. The City of Savage is continuing efforts to protect this important ecosystem through this project. Two large ravines -Dakota Avenue and McColl's Bluff - discharge to the Fen, which was granted special status under the State's Wetlands Conservation Act. Both ravines are highly eroded and carry a significant amount of stormwater and sediment to the Savage Fen.