The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
The Pope County Water Plan has identified surface water quality and erosion control as top priority resource concerns. These two priorities account for 33% of the phosphorus loading to Lake Emily. The Lake Emily Watershed Best Management Practices (BMP) Prioritization Project will provide GIS-based water quality analysis to assist the Pope Soil and Water Conservation District in determining effective locations for BMP implementation and will prioritize the areas from high to low for phosphorus, nitrogen, and sediment delivery from contributing runoff during rainfall events.
Pope Soil and Water Conservation District, partnered with Natural Resources Conservation Service staff and landowners, will install 22 targeted water and sediment control structures in two priority subwatersheds (Trappers Run and Minnewaska). These structures have the potential to reduce sediment load by 514 tons per year, and phosphorus by 440 pounds per year.
This project will use the Dakota County Soil and Water Conservation District's existing Conservation Initiative Funding program to provide technical assistance and monetary incentives for targeted, medium-sized projects such as raingardens, bioinfiltration, biofiltration, bioswales, shoreline stabilizations, and other best management practices (BMPs). Project proposals will be solicited from faith based organizations, homeowner associations, school organizations, lake associations, and others that own or manage large areas of land.
The City of Glenwood Water Quality Assessment & Best Management Practice Prioritization Project will include an assessment and analysis of approximately 1,796 acres affecting water quality and contributing runoff to Lake Minnewaska. By implementing this water quality analysis and assessment of the City of Glenwood and sub watersheds, a reducing pollutants by 1,287 pounds per year of phosphorus and 203 tons per year of sediment.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
The table below provides a short summary of the acres and sites accomplished. We enhanced or restored 59,495 acres in 458 separate habitat projects.Project Type # Sites # AcresFencing for conserv grazing 6 721grassland conversion 33 1,124Invasive Species Control 43 1,599mowing 3 104Prescribed burn 214 48,368Restoration 13 123Woody Removal 146 7,457
Many of Minnesota's wetlands have been lost and the remainder degraded. Recent tiling and ditching have accelerated this situation. Through this program, shallow lakes and wetlands were designed, constructed, and intensively managed to benefit wetland wildlife and Minnesota residents. Habitat accomplishments from this proposal have enhanced 19,365 acres of wetlands and shallow lakes to benefit waterfowl and wetland wildlife. Work was accomplish through constructed infrastructure, cattail control, and a significant prescribed wetland burn.
The goal of this program was to accelerate the protection of 887 acres as Waterfowl Production Area's. Pheasants Forever successfully protected eight parcels totaling 1,554.39 acres of prairie wetland and grasslands providing excellent habitat for numerous wildlife.
In total, we under spent on our budget, over delivered on acre goals, and over delivered on match leverage received.
With funding from the Outdoor Heritage Fund and other leveraged sources, the Anoka Sand Plain Partnership restored/enhanced 1,866 acres of priority wildlife habitat within the Anoka Sand Plain and in the Rum River watershed in east-central Minnesota.
The Anoka Sand Plain Partnership restored / enhanced 3,714 acres of priority prairie, savanna, forest, wetland, and shoreline habitat on public lands and waters within the Anoka Sand Plain EcoRegion within the Metropolitan Urbanizing, Forest-Prairie, and Northern Forest regions. Total R/E acreage achieved over the course of the appropriation is 126% of our stated acreage goals, and was accomplished through a robust partnership of four direct recipients improving a total of 16 priority sites including WMAs, state forest, national wildlife refuges, city and county lands.
This project is studying the response of certain aquifers to groundwater pumping. Research involves an aquifer test, which is an experiment where a well is pumped at a known, constant, pumping rate; changes in groundwater levels and stream flows in the areas around the aquifer test site are observed while the well is being pumped. These tests help us understand how groundwater flows between aquifers, which are underground rock and sand layers that hold water.
Partner Organizations: Anoka County Historical Society, Dakota County Historical Society, Scott County Historical Society, and Ramsey County Historical Society
Four county historical societies will begin a pilot program in 2015 to provide archaeology and cultural resource management outreach services to local history organizations in the seven-county metro area.The pilot project will address immediate needs of participating organizations, including public programming, data collection, collections care and staff training, while also providing valuable insight into long-term needs of local his
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River