A family dairy farm in the shoreland area of Lake Miltona has a liquid manure storage area that is not up to standards due to sandy soil and a high water table, increasing the likelihood of groundwater contamination. Lake Miltona is connected to the Alexandria Area Chain of Lakes and ultimately the water ends up in the Long Praire River. Groundwater impacts to the Long Prairie River have the potential to be significant.
Lake Miltona is considered one of the finest lakes in Central Minnesota and its 15 miles of lake shore make it the largest lake in Douglas County. Smokey Timbers Youth Camp, owned by the Smokey Timbers Foundation, is located on the north side of Lake Miltona. There is currently an erosion problem at the camp where a large gully has developed that drains into the lake.
Protect and restore 590 acres of significant wildlife habitat through conservation easements and restoration projects on private lands within Important Bird Areas with an emphasis on those located in within priority areas identified in the Minnesota Prairie Conservation Plan.
This project is for technical assistance during the Lake Winona Nutrient Total Maximum Daily Load (TMDL) public notice and revisions to the document prior to sending to the Environmental Protection Agency (EPA) for final approval.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The Redeye River watershed is conducting the second intensive watershed assessment. The water quality in the watershed is still pretty healthy, but the streams with poor water quality identified previously are still not meeting water quality standards. The goal during this cycle is to better identify problem areas so that parcel specific implementation can occur to achieve improved water quality. The best method available to better target implementation is through culvert inventories, visual and desktop surveys, as well as outreach.
Watershed based implementation funds will be used to target conservation practices utilizing the principles associated with Prioritize, Target and Measure as referenced in our Local Comprehensive Watershed Management Plan. The following are projects/practices, and their associated pollution reduction estimates, that are included in this budget request: (500 acres of Nonstructural BMPs) to protect/improve land management and reduce bacteria will reduce phosphorus by 65 lbs/yr, nitrogen by 520 lbs/yr, and sediment by 285 tons/yr.
The College of Saint Benedict and Saint John's University (CSB+SJU), in partnership with the University of Minnesota Morris (UMM), will collect and analyze archival records and oral testimonies on Native American boarding schools in order to develop educational materials that promote truth and healing. The project includes: 1) archival research; 2) oral testimonies; 3) developing curricular materials from these archival and oral records.
Many lakes in Minnesota are classified as “impaired” for aquatic recreation and aquatic life as the result of nonpoint source pollution. These impairments can be addressed by the citizens that live by and have a vested interest in these water bodies, but there is often a lack of knowledge and resources to take effective action. The Freshwater Society is using this appropriation to train citizen groups in lake ecology and management in order to guide them in implementing water quality improvement projects for their local water bodies.
The RIM-WRP program will expand past efforts and provide important benefits to the citizens of Minnesota by restoring and permanently protecting priority wetlands and associated upland native grassland wildlife habitat via perpetual conservation easements. This funding will leverage $12.6 million of federal WRP funds for the State of Minnesota and is expected to create and sustain 343 jobs and income to local landowners, businesses and others in the state based on USDA economic estimates.