Two large, actively eroding gullies located a few miles apart in Amador Township are contributing tremendous loads of phosphorus and sediment to the St. Croix River. One gully (Gully A) includes a major agricultural gully, severe road erosion, and sediment deposits of a foot or more thick in a state park. The second gully (Gully B) is over 4 feet deep, adjacent to a road, and is an annual problem. Stabilizing these two gullies will greatly reduce the sediment and phosphorus loading to the St. Croix River, which will help meet the reduction goal of the Lake St.
Using a previous escarpment gully project as a model, the Chisago Soil and Water Conservation District will complete a similar inventory of actively eroding gullies along the Lower Sunrise River from the Kost Dam south to the confluence with the St. Croix, which includes the North Branch of the Sunrise, Hay Creek, and the Sunrise River main branch. There are major erosion issues along this stretch of river, no organized and efficient way to begin work in the area. The inventory report will provide the missing link.
The Chisago Soil and Water Conservation District has been successful in implementing Best Management Practices in certain targeted locations within the county, including the prioritized and assessed areas of Chisago City, Lindstrom, and Center City. However, there are many areas that want to implement conservation projects but aren't within targeted areas. This award will empower community partners, especially lake associations, to award grants for rain gardens, shoreline buffers, and other worthwhile projects to improve water quality.
This feasibility study will produce strategies for wetland restoration and ditch hydrology changes to reduce the amount of phosphorus and solids that drain into Typo and Martin Lakes, the Sunrise River and St. Croix River. Total Maximum Daily Loads and other plans have identified this area as key for pollutant reduction, and the study will determine scope and effects of potential projects, allowing the district to prioritize those that will have the great impact on water quality.
This project will identify and prioritize opportunities to implement a multipurpose drainage management plan that will provide adequate drainage capacity, reduce peak flows and flooding and reduce erosion and sediment loading, improving water quality to the West Branch Rum River.
This project will install nearly 800 linear feet of restored lakeshore with an emphasis on bioengineering techniques, native plants and locating buffers/swales at points of concentrated overland flow into Green Lake. By targeting properties that are eroding and/or with concentrated overland flow to the lake we will reduce suspended solids discharge by 16,697 lbs/yr and phosphorus by 1.3 lbs/yr.
Past and current monitoring data has shown Ramsey County's Lambert Creek has high levels of total phosphorus (TP), anywhere from 0.14 mg/L to 0.30 mg/L, which is above the proposed State standard of 0.10 mg/L for streams in the Central Region.
Northern white cedar wetland plant communities provide unique ecological, economic, and wetland functions, including high value timber, long-term carbon storage, winter refuge for deer and other wildlife, wildlife habitat, and thermal buffering for brook trout streams. However, these plant communities have been declining in Minnesota for decades mostly as a result of development impacts. The Minnesota Board of Water and Soil Resources is using this appropriation to continue efforts aimed at improving the quantity and quality of white cedar wetland plant communities in Minnesota.
The purpose of this program is to provide cost share funding to community groups for the installation of community accessible rain gardens and other water quality projects in Ramsey County. The Ramsey Conservation District (RCD) in partnership with local property owners and Watershed Districts/Water Management Organizations will install 6-12 stormwater best management projects that will help protect and improve water quality of surrounding lakes, streams, rivers, and wetlands.
Capitol Region Watershed District is partnering with St. Paul Public Schools to implement a variety of highly visible Best Management Practices at Central High School that will improve the quality of stormwater discharged to the Mississippi River. A tremendous amount of sediment is discharged from the school annually due to the large impervious areas and lack of vegetation. Implementing the projects will reduce sediment by 86% and phosphorus by 90% over the target area annually.
The Project and Outreach Coordinator will facilitate efforts within the watershed to provide landowner support and assistance in identifying areas in need of conservation plans and best management practices. The coordinator would use the Watershed Protection and Restoration Strategy Report and county water plans to target and prioritize outreach and education to maximize water quality benefits. This will greatly multiply the number of educated landowners in the watershed and increase the number of projects implemented.
Capitol Region Watershed District will partner with local organizations and private landowners to implement a variety of cost-effective Best Management Practices in the East Kittsondale subwatershed. The urbanized condition of the 1,860 acre subwatershed results in an estimated 1,500 pounds of phosphorus, over 470,000 pounds of sediment, and significant concentrations of bacteria associated with that sediment being sent untreated to the Mississippi River each year. Those pollutants have contributed to several impairments within the river.
This project will continue collaboration with faith organizations in priority areas to implement stormwater volume reduction retrofit projects. Priority areas are defined as areas with limited to no stormwater treatment before reaching a water body and/or areas that drain to an impaired or at risk water.
At almost 4,000 acres, Trout Brook is the largest subwatershed in the Capitol Region Watershed District and the City of Saint Paul. The restored stream is part of the 42 acre Trout Brook Nature Sanctuary project, whose goal is to return the area back to some resemblance of its pre-industrialized valley of stream floodplain and wetlands. Monitoring results within the corridor show that phosphorus, sediments, bacteria, lead and copper are the pollutants of most concern.