This project will provide a shared working definition and principles for civic engagement, that enable state agencies to more effectively, strategically and collaboratively manage the social dimension of Minnesota’s water resource management efforts . The agencies included in the project are BWSR, MDNR, MDA, MDH and MPCA. The consultant and project participants will develop recommendations that will better enable policy and decision makers, CWF teams, the Clean Water Council and others to make informed decisions surrounding civic engagement efforts.
At the public drainage system scale, Faribault County will develop comprehensive Multipurpose Drainage Management Plans that focus on traditional and innovative conservation practices to reduce on-field and in-channel peak flow and erosion with enhanced water quality and wildlife habitat benefits. Planning will occur in conjunction with an established Redetermination of Benefits (ROB) schedule or as initiated through the petition process.
This project will determine the magnitude and frequency of contamination from endocrine active compounds (EAC's) and other contaminants of emerging concern in shallow groundwater in non-agricultural areas of Minnesota. EACs and other contaminants of emerging concern in this study include compounds typically found in waste water, including, pharmaceutical compounds, antibiotics, and hormones. This project supports the third phase, including laboratory analysis of samples for an additional 80 wells to be sampled by MPCA staff.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
The Marine on St. Croix Innovative Stormwater Management Implementation is a partnership, formalized through an MOU, between Marine on St. Croix (MOSC) and the Carnelian-Marine-St. Croix Watershed District (CMSCWD) to improve stormwater management in the most densely developed areas of the City on a neighborhood zone approach rather than site-by-site (parcel) approach for greater and more impactful results in accomplishing District and City stormwater management goals.
The Miller Hill Mall, a regional shopping destination located in the City of Duluth, is the largest contiguous impervious site in the Miller Creek Watershed. The draft Total Maximum Daily Load Study identified heated stormwater runoff as a major contributor to the creek's excessive heat loading problem, which negatively impacts the creek's native brook trout population. The Mall, along with eight other entities in the watershed, was assigned a reduction goal as part of the effort to address the temperature problem in this creek.
The District is seeking to further its goals of meeting multipurpose drainage management requirements under its obligations as a 103E drainage authority. Judicial Ditch 1 is the largest system in the District, and proportionally one of the largest contributors of sediment and nutrients to the downstream reaches of the North Fork Crow River.
Regionally, nitrate nitrogen concentrations are continuing to increase in both surface water and ground water based on monitoring data. The increasing trends are thought to be attributable to over application of manure and commercial nutrients on row-cropped fields. In order for nitrate concentrations to decrease, nutrient management is needed throughout the basin. Two nutrient management specialists will assist landowners in the eleven-county Southeast Minnesota Area with writing nutrient management plans and implementing conservation practices for manure and fertilizer use.
This project will assist farmers across Southeast Minnesota by providing guidance on management of nutrient sources including livestock manure, commercial fertilizers, and legumes. This project is important because excess nutrients and bacteria are causing negative impacts to the quality of waters. Two Nutrient Management Specialists will work one-on-one with farmers to develop 70 plans each year. Over time, it is anticipated that the number of new nutrient management plans will decrease as acres with plans increase.
The Otter Tail Water Management District (OTWMD) manages the wastewater for nearly 1,750 private residences near Otter Tail Lake, Deer Lake, and Lake Blanche. There OTWMD is responsible for 101 monitoring wells that were installed in 1984 and 1985 that are no longer being used and need to be properly sealed. The goal of this project is for the East Otter Tail Soil and Water Conservation District (EOTSWCD) to assist the OTWMD in properly sealing 100% of the monitoring wells that are located within the Otter Tail Surficial Aquifer.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government, and in 1982 the Counties and SWCDs within the watershed area formed the Pomme de Terre River Association Joint Powers Board to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity.The project partners are collaborating to improve surface water quality within the watershed with a grant from the Clean Water Fund.
The Sauk River and its seven reservoir lakes are impaired for turbidity, e.coli and excessive nutrients. Local studies conducted on Sauk Lake, the Sauk River Chain of Lakes and the lower reach of the Sauk River identified urban stormwater runoff as a source of sediment and nutrient loading. This project will address stormwater runoff concerns within the communities of Sauk Centre, Cold Spring and St. Cloud by providing treatment through bioretention and infiltration.
The contractor will provide 3 Scenario Analysis Manager (SAM) training sessions in the fall of 2016 for use with Hydrological Simulation Program FORTRAN (HSPF) model applications.
The goal of this project is to assess groundwater sustainability in the I-94 corridor between the Twin Cities and St. Cloud due to the corridor's significant expected growth, the inerent natural limits of groundwater, and the vulnerability of groundwater to contamination.
The goal of this project is to develop knowledge on pollutant removal and fate in infiltration Best Management Practices (BMPs). Results of this study will enhance pollutant reduction estimates, inform BMP planning and performance assessments, address groundwater protection concerns, and increase our understanding of stormwater and stormwater BMPs in the water cycle.
In conjunction with the Watonwan Major Watershed Project engagement process, create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the Watonwan River watershed.
In 2016, VocalEssence WITNESS welcomes artist Melanie DeMore to help us explore the Underground Railroad in Minnesota—specifically how our state has been a place of sanctuary for refugees from the time of slavery through today. As part of this project, Melanie will help record absent narratives of those who have found sanctuary in Minnesota, and these stories will be shared in video and written form to explore the concept of sanctuary as part of the WITNESS School Program.
Work resulting from this appropriation resulted in the acquisition, development, and inclusion of 2,095 acres into the state Wildlife Management Area (WMA) system, 74 acres into the the state Scientific and Natural Area system, and through easement acquisition added 387 acres to the state Native Prairie Bank.
This program acquired priority lands and developed them as Wildlife Management Areas (WMA) - six parcels protected totaling over 600 acres, Scientific and Natural Areas (SNA) - one parcel of 900 acres (287 acres credited to this funding ), and Native Prairie Bank (NPB) easements - two parcels totaling almost 200 acres. These lands protect habitat and some provide public hunting, trapping and compatible outdoor uses.
Red Lake River currently does not meet state water quality standards due to high amounts of sediment. For this project, the Red Lake County Soil and Water Conservation District will continue to work cooperatively with the Red Lake County Ditch Authority, and the landowners to reduce erosion and sedimentation into Judicial County Ditch 66. Judicial County Ditch 66 outlets into Cyr Creek which outlets directly into the Red Lake River.
Most of Hubbard, Todd and Wadena Counties' irrigated acreage consists of highly permeable, low water holding capacity, sandy textured soils overlying shallow and buried sand and gravel aquifers. These aquifers are very susceptible to non-point water quality degradation from land use practices.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in northcentral and northeastern Minnesota. This project will provide services and oversight of the installation for up to 31 well sites.
This project is studying the response of certain aquifers to groundwater pumping. Research involves an aquifer test, which is an experiment where a well is pumped at a known, constant, pumping rate; changes in groundwater levels and stream flows in the areas around the aquifer test site are observed while the well is being pumped. These tests help us understand how groundwater flows between aquifers, which are underground rock and sand layers that hold water.
Great River Energy (GRE) operates a power plant in the City of Elk River which generates electricity by incinerating municipal solid wastes. The plant is located proximate to the City of Elk River wastewater treatment plant (WWTP). This project will result in a corresponding reduction of groundwater use by GRE.
This project will establish a framework with County, Soil and Water Conservation District and watershed staff that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Cottonwood River and Redwood River watersheds.
The focus of this project will be on protection efforts to maintain or improve the water quality of Forest Lake by reducing phosphorus loads to the lake, especially from storm water. The two main objectives of this project are to compile and make minor updates to a large body of diagnostic work that already exists for Forest Lake, and to develop a comprehensive, site-specific implementation plan for best management practices (BMPs).
This project will fix problems at the statewide/system level so that all Watershed Restoration and Protection Strategy (WRAPS) reports and other projects will benefit by saving money and time as they will no longer have to do data reconciliation work.
Lake Shaokatan and its 13.9 square mile watershed is the headwaters of Yellow Medicine River, which is one of the thirteen major watersheds in the Minnesota River and the largest watershed in Lincoln County. The primary land use is agriculture with the major crops being corn and soybeans. The trend for significant soil loss is due to the nature of the topography with the highest point in the Yellow Medicine Watershed in Lincoln County being 1,960 feet and the lowest being 1,160 feet, a drop of 800 feet in 25 miles.
The Benton County Local Water Management Plan's first priority concern is feedlot and nutrient management. Our objective is to reduce or minimize the negative impact of animal manure and fertilizer on surface and ground water by increasing the adoption of feedlot, manure, fertilizer and pasture best management practices.
The goal of this project is complete a dataset necessary for assessment of 6 stream sites and 11 lakes within the Mississippi Headwaters Watershed to determine the overall health of its water resources, to identify impaired waters, and to identify those waters in need of additional protection to prevent future impairments.
This project will assess the exposure and effects of WWTP effluent on a model vertebrae organism, the fathead minnow. Through a series of controlled experiments, to be conducted on-site of the WWTP utilizing the Mobile Exposure Laboratory Trailer (MELT),SCSU will address (1) onset and timing of acute exposure effects, (2) downstream exposure effects, and (3) reproductive consequences of exposure for male and female fathead minnows. MPCA EAO staff will provide technical assistance and oversight of the project.
To provide grants to local units of government to support parks and trails of regional or statewide significance outside of the seven county metropolitan area. Funding for this grant program is from the Parks and Trails Fund created by the Minnesota Legislature from the Clean Water, Land and Legacy Amendment passed by the voters in 2008.
This project will establish a framework with the Pomme de Terre River Association (PDTRA), county staff, Soil and Water Conservation District staff, and state agencies that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Pomme de Terre River watershed. This work will form the basis to establish restoration and protection strategies that local governments and watershed organizations can use to make decisions that will lead to protecting and restoring the waters in the watershed.
The glacial geology of Ramsey County includes many layers of impermeable and semi-permeable material that can protect aquifers from contaminated waters. Many municipal public supply wells exist to draw water from these aquifers to supply thousands of consumers on a daily basis. Unfortunately, abandoned/unused wells also penetrate the protective layers of glacial material and can "short-circuit" the natural protection our glacial geology can provide allowing unfettered movement of contamination to even deeper aquifers below the ground.
This project is a partnership with farmers, livestock, commodity and conservation organizations and agencies to install, demonstrate and expand water drainage conservation within the Rock River Watershed. Up to four sites will be chosen based upon local selection criteria, installed and demonstrated to the public in 2013 and 2014.
The contractor will collect and process the necessary files needed to develop a Processing Application Tool for HSPF (PATH) and Scenario Application Manager (SAM) project for 30 HUC 8 watersheds in Minnesota. SAM provides a graphical interface to the Hydrological Simulation Program FORTRAN (HSPF) model applications and expands the state’s investment in HSPF to a broader audience in support of the development of Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports.
The St. Cloud Waste Water Treatment Facility (SCWWTF) is currently conducting long term planning for future biosolids management. The most likely path forward includes dewatering of the digested biosolids, which will produce a supernatant stream with significant phosphorus and ammonia loads that would be returned to the liquids treatment portion of the WWTF. Returning these nutrient loads to the liquids train would result in increases to effluent concentrations, increases in power consumption, or both.