We will assess the environmental quality of prairies across Minnesota. On-the-ground surveys and contaminant risk assessments will help inform partner management actions, endangered species recovery plans, and pollinator reintroduction efforts.
The Berger Fountain, known as the dandelion fountain to most, was installed in 1975 by Benjamin Berger and has been a beloved neighborhood landmark in Loring Park and a favorite location for wedding photographers and children ever since. Ben Berger was a park board commissioner and, after seeing a dandelion fountain in Australia, fundraised to build a sister fountain right here in Minnesota.
This study will leverage our current bioacoustics monitoring framework to assess avian diversity at the statewide scale through a citizen science acoustic monitoring program, with a focus on private lands.
This Total Maximum Daily Load (TMDL) project will develop a TMDL Report and Implementation Plan defining the sources contributing to the impairments and outlining the steps necessary to bring Bluff Creek back to meeting water quality standards.
This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
This full-scale pilot will evaluate supercritical water oxidation (SCWO) for managing PFAS in biosolids and water treatment residuals. SCWO can destroy PFAS in a variety of wastes and recover energy.
We will partner with urban municipalities and school districts to support planting of climate-resilient tree species. Activities include planting trees, gravel bed nursery creation, tree assessment and mapping, and community.
While aspen is one of the most dominant forest types, predicted future conditions will negatively impact aspen growth. Increasing tree diversity can provide increase ecological and economic resilience.
The Cannon River Watershed Habitat Complex Phase VIII program will protect approximately 160 acres in fee, and restore and enhance approximately 188 acres of high priority wildlife habitat within the Cannon River Watershed, including wetlands, prairies, Big Woods forest, and river/shallow lake shoreline. Its goal is to reverse habitat loss, prevent degradation of water quality, improve watershed function, and provide public access.
This project is to refresh the Cannon River Watershed Hydrologic Simulation Program FORTRAN (HSPF) model. The previous model was developed for the time period of 1995-2012. This phase will extend the model to include data through 2019. All time series data will be updated through 2019, land classification zones will be restructured, hydrology calibration will be updated as needed, and final reporting including technical memo and model package.
This project with the Cannon River Watershed Joint Powers Board will conduct lake and stream sampling for the watershed restoration and protection strategy (WRAPS) update in the Cannon River Watershed. This sampling will track changes from the 2011 results, along with fill in gaps, delist or keep an eye out for new impairments, and gather data for permitting. The sites of sampling were selected by the Minnesota Pollution Control Agency (MPCA) and will be looking at lake and stream chemistry and stream bacteria.
The Cannon River Watershed Habitat Protection and Restoration Program will protect approximately 275 acres in fee, and restore and enhance approximately 181 acres of high priority wildlife habitat within the Cannon River Watershed, including wetlands, prairies, Big Woods forest, and river/shallow lake shoreline. Its goal is to protect existing high quality habitat, restore degraded habitat, prevent degradation of water quality, and provide public access.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
The Cannon River Watershed Habitat Complex Phase IX program will protect approximately 150 acres in fee, and restore and enhance approximately 93 acres of high priority wildlife habitat within the Cannon River Watershed, including wetlands, prairies, Big Woods forest, and river/shallow lake shoreline. Its goal is to reverse habitat loss, prevent degradation of water quality, improve watershed function, and provide public access.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.