We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
The Redeye River watershed is conducting the second intensive watershed assessment. The water quality in the watershed is still pretty healthy, but the streams with poor water quality identified previously are still not meeting water quality standards. The goal during this cycle is to better identify problem areas so that parcel specific implementation can occur to achieve improved water quality. The best method available to better target implementation is through culvert inventories, visual and desktop surveys, as well as outreach.
Watershed based implementation funds will be used to target conservation practices utilizing the principles associated with Prioritize, Target and Measure as referenced in our Local Comprehensive Watershed Management Plan. The following are projects/practices, and their associated pollution reduction estimates, that are included in this budget request: (500 acres of Nonstructural BMPs) to protect/improve land management and reduce bacteria will reduce phosphorus by 65 lbs/yr, nitrogen by 520 lbs/yr, and sediment by 285 tons/yr.
Water quality and flood damage reduction goals can't be accomplished without reducing flows and taking a targeted approach to the upper most reaches of the most critical waterways. Water and sediment control basins are eartern structures that retain water and have been identified as one of the best tool for measured success in reducing peak flows. For this project, basins will be targeted and implemented in the Upper Cedar River Watershed, specifically in the Dobbins Creek Watershed.
With a population of 162,000 that expands by approximately 300,000 annually through tourism, the Brainerd Lakes area is truly a beloved “up north” destination in Minnesota. Brainerd’s emerging Region 5 Children’s Museum (working title) envisions a more connected Minnesota and will actively bring together people from diverse backgrounds in shared experiences through the exploration of northern Minnesota’s rich art, culture, and heritage.
Project will mitigate the effects of climate change by restoring water retentive capabilities to 7 acres on the Long Prairie River while also creating both recreational and educational opportunities.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.
Under the CREP partnership with USDA, 28 easements were recorded on a total of 2,390 acres to restore previously drained wetlands and adjacent uplands. Two easements are RIM wetland easements that were required to complete wetland restoration work on an adjacent easement secured with 2018 Wetlands funding. The landowners received the RIM-Only payment rate. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for landowner payments and conservation practices.
The Reinvest in Minnesota (RIM) Wetlands Partnership Phase V protected and restored 2,041 acres of previously drained wetlands and adjacent native grasslands on 23 conservation easements. All easements have been recorded. $35,000 of funds from other sources were also used.
Nitrogen is a serious problem in Minnesota's Mississippi River Basin and the Dodge Soil and Water Conservation District (SWCD) plans to address this problem through the instillation of six nitrogen reducing agricultural best management practices in the Dodge/Steele Joint County Ditch No. 11 system, also known as the Ripley Ditch system. Agriculture drainage, through the use of agricultural tile drainage systems, has been identified as the number one leading source of nitrogen in the Mississippi River Basin.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.