The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.
This project will construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs) at the Big Fork River and Little Fork River watersheds.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
Moose, one of Minnesota's prized wildlife species, are dying at much higher rates in Minnesota than elsewhere in North America. Recently observed increases in mortality rates amongst some moose in northeastern Minnesota have led to concern that the population there may be entering a decline like that seen in the northwestern part of the state, where moose populations fell from over 4,000 to fewer than 100 in less than 20 years. Additionally the specific causes of increased mortality amongst individual moose remain under investigation.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Agricultural drain tiles with surface intakes are considered a significant delivery mechanism of nutrients to Minnesota River. Protecting those surface water inlets can reduce the direct path those nutrients have to the river. In addition, in agricultural fields with subsurface drainage, leached nitrate creates elevated nitrate levels in tile drainage water. These high nitrate concentrations can cause algae blooms that remove oxygen. To help remove nitrates leached into tile drains, wood chip bioreactors can be installed to remove nitrate from the tile water before it enters surface water.
Demand for Engineering services in Northeast Minnesota's nine-county Area III Technical Service Area is exceeding the capacity to deliver the needed services. There are increased requests from Soil and Water Conservation Districts for engineering needed to design and install Best Management Practices in part due to requests related to Clean Water Fund projects. These funds will be used to hire an engineer, which will increase engineering capacity and result in the completion of at least five additional projects per year.