The purpose of this Phase II Project is to advance the inventory process of the 103E drainage ditches where erosion, sediment, and/or nutrients are contributing substantially to water quality degradation, and prioritize sites for side water inlet control and/or buffer strip implementation.Through this project, Red Lake Watershed District, Red Lake County Ditch Authority, along with the Red Lake County SWCD, will be working together prioritizing county ditch systems (based upon water quality degradation and the amount of sediment loading that is occurring in the ditch systems), targeting whe
Red Lake County Soil and Water Conservation District (SWCD) has targeted water quality improvement projects to twelve sites in the Black River, Cyr Creek, and Red Lake River Sub-Watersheds of the Red Lake River Watershed. Data analysis obtained from a variety of models identified which sub-watersheds were contributing to impairments, highlighted which fields in those sub-watersheds were contributing the most sediment, and even showed specific locations in the field which were most vulnerable to erosion.
The Clearwater River from the Lost River to Beau Gerlot Creek and from the Lower Badger Creek to the Red Lake River is on the Total Maximum Daily Load Impaired Waters List for Turbidity. Red Lake County Soil and Water Conservation District (SWCD) has targeted five sites in the Terrebonne Creek, Beau Gerlot Creek, and Lower Badger Creek subwatersheds of the Clearwater River Watershed; with the potential of an additional five to ten more projects, based on data analysis obtained from a number of models.
Red Lake River currently does not meet state water quality standards due to high amounts of sediment. For this project, the Red Lake County Soil and Water Conservation District will continue to work cooperatively with the Red Lake County Ditch Authority, and the landowners to reduce erosion and sedimentation into Judicial County Ditch 66. Judicial County Ditch 66 outlets into Cyr Creek which outlets directly into the Red Lake River.
Most of Hubbard, Todd and Wadena Counties' irrigated acreage consists of highly permeable, low water holding capacity, sandy textured soils overlying shallow and buried sand and gravel aquifers. These aquifers are very susceptible to non-point water quality degradation from land use practices.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
The Crow Wing River is a valuable natural resource and forested regions in the watershed are at risk from conversion to cropland and clearing for other uses. In order to maintain the high quality upland that protects the water quality, forestry practices are being encouraged with cost-sharing and education in an effort to manage, protect, and improve existing forest stands.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
Continue and finalize watershed models using Hydrologic Simulation Program FORTRAN (HSPF) for the Grand Marais Creek and Snake River Watersheds and complete the calibration/validation process.
Stormwater along the Clearwater River add sediment, nutrients and organic material to this important tributary of the Red River of the North. Turbidity impairments caused by those sediments contribute to several environmental and economic problems including interfering with spawning habitat critical to Lake Sturgeon recovery in the Red River Watershed and increasing drinking water treatment costs for the city of East Grand Forks.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.