The goal of this project is to continue and finalize Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The project will add representation of point source discharges to the model, compile flow and water quality data for the purposes of calibration and validation. The end result will be an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to collect data, water chemistry and field parameters, which will be paired with biological data collected by the MPCA to assess water quality conditions at seven sites along targeted reaches within the Snake River Watershed and five sites in the Two River Watershed.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
The goal of this project is to complete the construction of an Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. Tetra Tech will produce a HSPF watershed model application(s) that will be fully functioning and ready for calibration as part of Phase 2.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to address public comments on the public noticed draft Watershed Restoration & Protection Strategy (WRAPS) study and Total Maximum Daily Load (TMDL) report for the watershed, and to produce a final draft WRAPS study and TMDL report ready for final approval by the United States Environmental Protection Agency (USEPA) and Minnesota Pollution Control Agency (MPCA).
This Surface Water Assessment Grant (SWAG) project is intended to supplement the 2019-2020 Intensive Watershed Monitoring (IWM) process for the Buffalo and Upper Red River of the North watersheds. Nine sites will provide water chemistry and river eutrophication data to the IWM. Monitoring sites were requested by the Buffalo - Red River Watershed District (BRRWD) and the Minnesota Pollution Control Agency (MPCA).
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
The Buffalo River Watershed Pilot Project is one of two pilots in Minnesota designed to develop a watershed approach for managing Minnesota’s surface waters. The goal of this project is to develop a plan that will guide surface water quality management throughout the watershed.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
This first phase of project will define the existing watershed conditions; identify gaps in existing data; design and implement a plan to address data gaps; incorporate gap data into watershed description; guide development of the HSPF model; establish citizen advisory, technical advisory and locally-based focus groups; research and design an education and outreach strategy; and design and deploy the tools and methods to employ the strategy.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
The East Polk Soil and Water Conservation District will monitor six sites along the Sandhill River and one site along Kittleson Creek within the Sandhill River Watershed District. Monitoring data will be used to track changes in water quality on sites that have historical data, fill in data gaps where monitoring data has been limited or nonexistent, target problem areas, monitor for new or current impairments, and will be used for permitting.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
This phase of the project will complete the analysis of existing and newly collected water quality data in the Red River of the North-Grand Marais Creek watershed and also verify the impairments on the currently listed reaches and determine the status of the remaining river reaches as being either impaired or currently meeting standards. Stakeholder involvement and public participation will be a primary focus throughout the project.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
The purpose of this project is to prepare a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study for public notice. This project will include addressing and incorporating Minnesota Pollution Control (MPCA) review comments in both documents. The TMDL Study has been submitted to the United States Environmental Protection Agency (USEPA) for preliminary review. USEPA comments will be addressed prior to public notice.
The goal of this project is to construct watershed models for the Grand Marais Creek and Snake River Watersheds and perform an initial hydrologic calibration using Hydrologic Simulation Program FORTRAN (HSPF).
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Phase 2 of the Marsh River Watershed Restoration and Protection Strategy (WRAPS) project includes: continued civic engagement; production of the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; and production of the WRAPS report, which identifies implementation strategies that will maintain or improve water quality in many lakes and streams throughout the watershed.
The goals of Phase I of the Marsh River Watershed (WRW) Watershed Restoration and Protection Strategy (WRAPS) project are to: 1) gather or develop watershed data needed for the development of the WRAPS project; 2) establish project and sub-basin work groups, develop a social outcomes strategy, and develop a civic engagement evaluation strategy to guide the WRAPS project; and 3) begin to identify, create, and organize tools that can be used to determine potential stressors and priority management areas.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The goals of project are to: 1) engage stakeholders and the public in watershed management activities; 2) conduct microbial source tracking to determine the source(s) of E.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
This project will be the first of its kind Civic Engagement Cohort that focusses its efforts in an individual watershed. The Otter Tail River Watershed is scheduled to start a Watershed Restoration and Protection Strategy (WRAPS) in 2016 and as a component of that project, the cohort will provide the civic engagement requirement. The cohort will be comprised of 25-30 individuals located throughout the watershed who represent a broad spectrum of resource managers and citizens who are familiar with water quality and watershed management.