Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Goose, East and West Rush Lakes are not meeting state water quality standards due to excessive phosphorus. These are three of the worst lakes in Chisago County in terms of water quality, yet also some of the most heavily used lakes for recreation. The quality of the water in the St. Croix River is directly influenced by the poor quality water leaving East Rush, West Rush, and Goose Lakes.
The goal is to facilitate strategic networking, learning, and implementation in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed
Bone Lake and upstream Moody Lake are the headwaters of the Comfort Lake-Forest Lake Watershed District northern flow network, and as such, their water quality sets the stage for downstream waters, particularly Comfort Lake, the Sunrise River, and ultimately Lake St. Croix. This project proposes the implementation of six wetland restorations located along the tributary identified as the single highest source of phosphorus loading to Bone Lake. These wetland restorations are estimated to reduce watershed phosphorus loads to Bone Lake by 50 pounds per year.
This project will establish a framework with County, Soil and Water Conservation District and watershed staff that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Cottonwood River and Redwood River watersheds.
The goal of this project is to adapt and expand the existing successful Master Water Stewards program to engage citizens and catalyze clean water projects in suburban, exurban and rural communities of Washington and southern Chisago Counties. As part of this project, 20 citizens' stewards will be recruited and trained to work in partnership with the Washington Conservation District and area watershed management organizations to implement clean water projects in identified priority areas.
This project will develop an enhanced street sweeping plan for the City of Forest Lake that optimizes phosphorus removal from increasing sweeping frequency with the cost of additional sweeps. In addition, this project will identify road-specific street sweeping timing and frequency, quantify expected phosphorus load reductions, itemize costs of enhanced street sweeping, and recommend funding options to the City of Forest Lake.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
Several important milestones will be completed during this phase of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
Several important milestones will be completed during this Phase (Phase II) of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This project will determine the condition of the water bodies in the Otter Tail River watershed, initiate public participation in the Watershed Restoration and Protection Strategy (WRAPS) development process, begin identification of potential stressors and priority management areas within the watershed, and begin development of initial drafts of the Total Maximum Daily Load (TMDL) study and WRAPS report.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
In 2017 and 2018, Redwood-Cottonwood Rivers Control Area (RCRCA) will collect water chemistry samples from the 10 lakes and 24 stream sites identified in the Redwood and Cottonwood River watersheds. Six samples will be collected at 10 lakes from May through September in 2017; five samples will be collected at 5 lakes in 2018 from May through September. Eleven samples will be collected at each of the 24 stream sites following the Basic Regime in 2017. Sixteen samples at each stream site will be collected in 2017 and 2018 following the E.coli monitoring regime.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
This project targets one of Chisago County's few remaining large dairy operations. It is situated on the top of the St. Croix River escarpment and drains over the bluff to the St. Croix River. This project includes installation of several practices in the feedlot area, including critical area planting to help stabilize a gully formed through the feedlot. There are also two other gullies located at the edge of fields or pasture areas that will be stabilized using water and sediment control structures, grade stabilization practices, or diversions.
The Watonwan Watershed Resource Specialist has been funding with Clean Water funds since 2012. Since that time, the Watonwan Watershed Resource Specialist has been a crucial connector between landowners and natural resource professionals in the Watonwan Watershed. As the technical ability and responsibilities of the WWRS expands, the need and urgency to secure extended funding becomes a priority. This project will fund half of the Watonwan Watershed Research Specialist position through year 2020.
The Yellow Medicine One Watershed One Plan has identified Protecting and Preserving Groundwater Quality and Quantity as one of the three priorities addressed in the Plan. Seven priority sub-watersheds have been identified as priority areas, as well as two townships that have been identified by the Department of Agriculture to have vulnerable groundwater areas. Our goal is to provide 50% cost share to seal 34 abandoned wells that are located in these priority areas.