The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to construct, calibrate, and validate a watershed model using the Hydrological Simulation Program FORTRAN (HSPF) model for the Upper/Lower Red Lake Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The College of Saint Benedict and Saint John's University (CSB+SJU), in partnership with the University of Minnesota Morris (UMM), will collect and analyze archival records and oral testimonies on Native American boarding schools in order to develop educational materials that promote truth and healing. The project includes: 1) archival research; 2) oral testimonies; 3) developing curricular materials from these archival and oral records.
The concrete floor in the exhibit and storage area of a former garage structure, located on the Clearwater Historical Society museum grounds, was removed and replaced. The severely deteriorated floor with an insafe step down had been barred to public access. With the floor replaced storage capacity has been increased, artifacts are more accessible, space is more usable and the building is now in compliance with ADA requirements.
With this grant, we were able to perform 195 acres of treatment within polygons resulting in the restoration or enhancement of 21 parcels. Overall treatment effort was even greater within wetlands (271 acres), with many areas receiving multiple overlapping treatments. Focusing our treatments on the most ecologically damaged areas allowed us to improve wetlands substantially, even if active treatment did not occur throughout every part of the parcel where invasives may not have occurred. 268+ acres had 50% of their areas treated, which we consider a standard for substantial restoration.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The CREST team wants to create a mobile lab with innovative, engaging educational activities that would be used to travel to underserved, underrepresented schools and community events in Northwest Minnesota