The Children's Discovery Museum in Grand Rapids, Minnesota will increase access and deepen engagement with their effectively proven School Service Program. The museum will take down the economic barriers and increase enrollment. This grant will fund more educators and facilitators, curriculum development, scholarship aid, transportation assistance and art/teaching supplies.
This application expands on the competitive "Future of Farming" CWF Grant that Becker SWCD received in 2022. The project builds resilient agricultural systems and achieves non-point source pollution reductions identified by local and regional water quality monitoring and models. This application will focus on the public water system of the Otter Tail River where the City of Fergus Falls draws their drinking water downstream of Becker County. It will also focus on the groundwater vulnerability of the Straight River located in the Crow Wing River Watershed and the Redeye River Watershed.
Connecting students from Northeastern Minnesota, especially Ely and Cook County schools, to the Boundary Waters Canoe Area Wilderness through grade-wide day trips and overnight wilderness experiences during the school year.
This project strives to continue progress towards the sediment and nutrient reduction goals for the Buffalo River. Specific targeted practices and quantities include Water and Sediment Control Basins (110), Grade Stabilizations (7), Grassed Waterways (10), Critical Area Plantings (12), Filter Strips (45 ac.), Cover Crops (2,500 ac/year), Rotational Grazing/Use Exclusion (320 ac), Wetland Restoration (86 ac).
This project strives to make further, substantial steps towards the sediment and nutrient reduction goals for Buffalo River Watershed District's (BRRWD) Mainstem and Lakes Planning Region and the objectives of the Buffalo-Red River Comprehensive Watershed Management Plan adopted in 2021.
This project will build off the success of the additional geographic information system (GIS) and water planning expertise the TSA8 added in 2016 to provide consistent mapping, water planning assistance and training to partners. This project will help soil and water conservation districts prepare for the 1W1P process before the planning starts. A unified protection methodology is essential for the 1W1P process to be successful. This project will include: unified GIS mapping and protection model for all nine counties respectively.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
Over the past 100 years, about half of Minnesota’s original 22 million acres of wetlands have been drained or filled. Some regions of the State have lost more than 90 percent of their original wetlands. The National Wetland Inventory, a program initiated in the 1970s, is an important tool used at all levels of government and by private industry, non-profit organizations, and private landowners for wetland regulation and management, land management and conservation planning, environmental impact assessment, and natural resource inventories.
The purpose of this project is to gather data specific to developing a site-specific standard for phosphorus for Upper and Lower Red Lakes. These are large shallow lakes that are located in an area where no shallow lake standard exists. Because of these lakes' unique characteristics, it is believed that a site-specific standard is more appropriate than the deep lake standards that currently exist. This project will include additional chemistry and flow monitoring of tributaries to the lakes, as well as outflow of Lower Red Lake to the Red Lake River.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
This project is for the editing the draft Watershed Restoration and Protection Strategy (WRAPS) and Total Maximum Daily Load (TMDL) reports resulting from comments received from Minnesota Pollution Control Agency and U.S. Environmental Protection Agency staff, preparing the documents for public notice, assisting with responding to public comments and preparing the final documents for final federal and state approval.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
The Upper Buffalo River Sediment Reduction Project area lies in the first major land use transition within the buffalo's flowage, where intact forests and modestly developed lakes give way to altered hydrology and tilled fields of highly productive soils near the top of the Red River Basin. This abrupt change in land use within the watershed is directly linked to stream impairments within the project area.
A joint effort of Becker and Clay Soil and Water Conservation District, the Buffalo Red Shallow Lakes and Mainstem Improvement Strategy will reduce nutrient and sediment delivery to 12 impaired lakes and impaired reaches of the Buffalo River through a targeted and prioritized approach to the implementation of Best Management Practices (BMPs). Numerous models have been combined with local knowledge to identify chief sources of constituents in the watershed and to isolate and prioritize implementation sites demonstrating the most significant gains in water quality.
Wolf survival and predation in summer are almost unknown but critical to deer, moose, and wolf, management. We'll study wolf predator-prey ecology, share charismatic natural history, and promote Voyageurs' region.
Wetlands in large lakes in the Voyageurs National Park area have been degraded by invasive cattails, which reduces biodiversity, degrades fish/wildlife habitat, and outcompetes wild rice/manoomin. Phases 1&2 of the project entailed refinement of restoration methods. We will continue mechanical treatment methods in Phase 3 to remove invasive cattails and other vegetation, including use of contracted harvesting machines, NPS owned-cutting machines, and hand crews in more inaccessible areas.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
Vermilion Community College will assist the Minnesota Pollution Control Agency (MPCA) with meeting the Watershed Restoration and Protection Strategies (WRAPS) development objectives of collecting data and completing watershed assessments for the Rainy River Headwaters, Vermilion River, and Little Fork River watersheds. Services will include providing support for field water monitoring, other field sampling and measurements and related field data management, analysis, and assessments in these watersheds.
Phase 8 of the Wetland Habitat Protection and Restoration Program will result in the protection of 745 acres of high priority wetland habitat complexes in Minnesota's Prairie, Forest-Prairie Transition and Northern Forest areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Over the past five years, awareness of our organization has spread across the state. As a result, our attendance numbers have grown by 66%. We regularly hit max capacity, and the demand for outreach programs has gone up. Ex-S.T.R.E.A.M. expansion addresses three specific elements: 1) New space: Renting an additional 2,800 sq. ft of exhibit space to address spatial constraints.
1. Contract Ojibwe Language Consultant(s) to work within our White Earth Child Care and White Earth Head Start programs to provide support and guidance in Ojibwe Language Development for our youngest learners.
Develop and create an Ojibwe Language Resource Kit for our White Earth Ojibwemowin Teachers who have attained Eminence. Provide technology for Ojibwemowin Teachers to utilize language apps and programs in the classroom and during community gatherings. White Earth will establish virtual weekly community Language Tables. White Earth will establish virtual weekly Teacher language tables, closed to the public.