The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government, and in 1982 the Counties and SWCDs within the watershed area formed the Pomme de Terre River Association Joint Powers Board to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity.The project partners are collaborating to improve surface water quality within the watershed with a grant from the Clean Water Fund.
The goal of the Pomme de Terre River Association (JPB) is to improve local water resources within the watershed through targeted voluntary efforts and build strong relationships with local landowners, producers, and citizens. Utilizing the State's first Watershed Restoration and Protection Strategy, the JPB has targeted and identified specific areas and activities required for marked water quality improvement.
The Pomme de Terre River Association will partner with the Minnesota Pollution Control Agency to conduct water quality monitoring in the Pomme de Terre River Watershed. The purpose will be to determine if waters meet the states non-point source pollution standards. The data collected will be utilized to produce the cycle two Watershed Restoration and Protection Strategy (WRAPS) report and supporting documents for the watershed. Through the utilization of this funding a total of 11 lakes and 7 stream reaches will be assessed.
This project will establish a framework with the Pomme de Terre River Association (PDTRA), county staff, Soil and Water Conservation District staff, and state agencies that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Pomme de Terre River watershed. This work will form the basis to establish restoration and protection strategies that local governments and watershed organizations can use to make decisions that will lead to protecting and restoring the waters in the watershed.
The goal of this project is to extend through 2016, calibrate, and validate the existing watershed model using Hydrological Simulation Program FORTRAN (HSPF) for the Pomme de Terre River Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) studies.
Certain stretches of the Pomme de Terre River have been identified as impaired. This project will quantify the reductions in pollutant loading that would be necessary to bring water quality in the impaired stretches to an acceptable level. It will also identify strategies that would improve water quality in these impaired stretches. Some funds will support public input activities into the Pomme de Terre River watershed management plan.
The goal of the Pomme de Terre River Association (PDTRA JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. To further our efforts in strategically working to achieve our reduction goals, listed in our Major Watershed Restoration and Protection Strategies Report and Turbidity Total Maximum Daily Load report, we would like to further define our Priority Management Zones through the development of a hydrological conditioned Digital Elevation Model.
The Pomme de Terre River Association (PDTRA) will use this funding to pursue goals stated in the Comprehensive Watershed Management Plan. PDTRA has identified five priority areas to focus sediment & phosphorus reduction goals: Northern Lakes, Christina/Pelican Lakes, Pomme de Terre River Lakes Chain, Pomme de Terre River Corridor, and Drywood Creek. Plans include but aren't limited to: water & sediment control basins, alternative tile intakes, shoreline restorations/stabilizations, critical area plantings, grass waterways and SSTS upgrades.
This project will develop feasibility analysis, a drawdown plan for Malmedal Lake and an analysis of available options for fish barriers in the watersheds of Malmedal Lake and Strandness Lake.
The project will advance the protection, restoration and enhancement goals for prairie, grassland and wetland habitats as described in the 2018 MN Prairie Conservation Plan. It builds upon the highly successful model established via prior Prairie Recovery Phases and seeks to protect 400 acres in Fee without PILT obligations to be held by The Nature Conservancy, enhance 18,000 acres of permanently protected grasslands, and restore 100 acres of prairie and wetland habitat.
We propose to integrate Minnesota Wildflowers Information, an online tool for plant identification, with the Minnesota Biodiversity Atlas, to preserve and extend this popular ENTRF-supported resource for future use.
To prepare condition report and treatment proposal for murals in the Grant County Courthouse, which is listed in the National Register of Historic Places.
This project helps Minnesota entities that directly or indirectly cause PFAS and microplastics contamination stop the flow of the contaminants by developing strategies to manage solid waste streams.
The Prioritization, Targeting, and Measuring Water Quality Improvement Application (PTMA) connects the general qualitative strategies in a Total Maximum Daily Load (TMDL) and Watershed Restoration and Protection (WRAP) and the identification of implementable on-the-ground Best Management Practices (BMPs). Leveraging geospatial data from the International Water Institute this application will be developed for two pilot areas within the Red River Basin.
Protect and restore 590 acres of significant wildlife habitat through conservation easements and restoration projects on private lands within Important Bird Areas with an emphasis on those located in within priority areas identified in the Minnesota Prairie Conservation Plan.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
Many lakes in Minnesota are classified as “impaired” for aquatic recreation and aquatic life as the result of nonpoint source pollution. These impairments can be addressed by the citizens that live by and have a vested interest in these water bodies, but there is often a lack of knowledge and resources to take effective action. The Freshwater Society is using this appropriation to train citizen groups in lake ecology and management in order to guide them in implementing water quality improvement projects for their local water bodies.
The Reinvest in Minnesota (RIM) Reserve Wetlands Reserve Program (WRP) Partnership will accelerate the restoration and protection of approximately 4,620 acres of previously drained wetlands and associated upland native grassland wildlife habitat complexes via perpetual conservation easements. The goal of the RIM-WRP Partnership is to achieve the greatest wetland functions and values, while optimizing wildlife habitat on every acre enrolled in the partnership.
Using the Reinvest in Minnesota (RIM) program, this project addressed the potential loss of grassland habitats from conversion to cropland and accelerate grassland protection efforts not covered by other programs. Focusing on Minnesota Prairie Plan-identified landscapes and working in coordination with established Prairie Conservation Plan Local Technical Teams (LTTs), this project fulfilled the accomplishment plan goal of enrolling 710 acres of grassland habitat in permanent conservation easements by completing more easements than estimated, for a total of 13 easements.
Under the CREP partnership with USDA, 38 easements were recorded on a total of 2,732 acres to restore previously drained wetlands and adjacent uplands. One easement is a flowage easement that was required to complete wetland restoration work on an adjacent
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
Scientific and Natural Area (SNA) strategic acquisition (~85 acres) will conserve Minnesota's most unique places and rare species for everyone's benefit.
This education project will continue building the next generation of conservationists in Minnesota by engaging youths and adults in science and outdoor learning through radio, podcasts, newsletters and schoolyard exploration.