Funding is prioritized to structural and non-structural practices within the Upper Mustinka and Fivemile Creek planning regions. In addition, a primary goal will be to complete a feasibility study for the Fivemile Creek Restoration as well as completion of the final phase of the Lake Traverse Water Quality Improvement Project. The BdSWD will focus on 4 CIPs within the Bois de Sioux River planning regions; WCD Sub-1, WCD 35 and WCD 20 & 25 drainage retrofit projects.
This is the third round of watershed based implementation funds to be shared by up to 13 LGU's between the Bois de Sioux River and Mustinka River watersheds. These funds are to implement grant eligible components of the 2021 - 2030 Joint Comprehensive Watershed Management Plan. Activities for this grant application are diverse, reflecting activities planned to improve water quality to and within legal drainage systems, streams, and lakes in the Bois de Sioux and Mustinka River watersheds.
The Chippewa River Watershed planning partnership has based its comprehensive watershed management plan (CWMP) on six planning regions. Each planning region has a list of prioritized and targeted resource concerns, measurable goals, and implementation actions. Implementation actions will be focused based on the CWMP on the highest and medium priority practices in locations within each planning region, which were prioritized based on local concerns, programs, etc.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project will complete data collection on 11 lakes over a 2 year period in the Pomme de Terre Watershed. The data collected will be be used in the Major Watershed Project proposed for this watershed.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms. This project continues a 2012 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms.
This project continues a 2011 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been impaired for turbidity due to too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat
and feeds algae blooms.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This project will develop the Pomme de Terre Watershed Total Maximum Daily Load (TMDL) study for the second round of the 10-year watershed approach cycle in the Pomme de Terre watershed. This phase of the project will address 4 stream impairments and 3 lake impairments and produce a draft TMDL document. A second phase may be needed as the stressor ID report identifies more stream reaches with TMDL relevant stressors.
The goal is to facilitate strategic networking, learning, and participation of targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to become aware of water quality issues and increase best management practice adoption to restore and protect water quality in the Pomme de Terre River watershed. This goal will benefit the completion of the second cycle of the watershed approach by providing useful information important in the completion of Watershed Restoration and Protection Strategies (WRAPS) report.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government. In 1982 the Pomme de Terre River Association Joint Powers Board (JPB) was formed to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity. The goal of the JPB is to improve the local water resources within the watershed through voluntary efforts and building relationships with local landowners.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government. In 1982 the Pomme de Terre River Association Joint Powers Board was formed to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity. This project is a continuation of a 2011 Clean Water Fund project.
PDTRA will use this funding to pursue goals stated in the CWMP. PDTRA has ID'd 5 priority areas to focus sediment & phosphorus reduction goals: Northern Lakes, Christina/Pelican Lakes, PDT River Lakes Chain, PDT River Corridor, & Drywood Creek. Plans include but aren't limited to: water & sediment control basins, alternative tile intakes, waste pit closures, grade stabilizations, livestock exclusions, shoreline restorations/stabilizations, cover crops.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government, and in 1982 the Counties and SWCDs within the watershed area formed the Pomme de Terre River Association Joint Powers Board to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity.The project partners are collaborating to improve surface water quality within the watershed with a grant from the Clean Water Fund.
The goal of the Pomme de Terre River Association (JPB) is to improve local water resources within the watershed through targeted voluntary efforts and build strong relationships with local landowners, producers, and citizens. Utilizing the State's first Watershed Restoration and Protection Strategy, the JPB has targeted and identified specific areas and activities required for marked water quality improvement.
The Pomme de Terre River Association will partner with the Minnesota Pollution Control Agency to conduct water quality monitoring in the Pomme de Terre River Watershed. The purpose will be to determine if waters meet the states non-point source pollution standards. The data collected will be utilized to produce the cycle two Watershed Restoration and Protection Strategy (WRAPS) report and supporting documents for the watershed. Through the utilization of this funding a total of 11 lakes and 7 stream reaches will be assessed.
This project will establish a framework with the Pomme de Terre River Association (PDTRA), county staff, Soil and Water Conservation District staff, and state agencies that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Pomme de Terre River watershed. This work will form the basis to establish restoration and protection strategies that local governments and watershed organizations can use to make decisions that will lead to protecting and restoring the waters in the watershed.
The goal of this project is to extend through 2016, calibrate, and validate the existing watershed model using Hydrological Simulation Program FORTRAN (HSPF) for the Pomme de Terre River Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) studies.
Certain stretches of the Pomme de Terre River have been identified as impaired. This project will quantify the reductions in pollutant loading that would be necessary to bring water quality in the impaired stretches to an acceptable level. It will also identify strategies that would improve water quality in these impaired stretches. Some funds will support public input activities into the Pomme de Terre River watershed management plan.
The goal of the Pomme de Terre River Association (PDTRA JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. To further our efforts in strategically working to achieve our reduction goals, listed in our Major Watershed Restoration and Protection Strategies Report and Turbidity Total Maximum Daily Load report, we would like to further define our Priority Management Zones through the development of a hydrological conditioned Digital Elevation Model.
The Pomme de Terre River Association (PDTRA) will use this funding to pursue goals stated in the Comprehensive Watershed Management Plan. PDTRA has identified five priority areas to focus sediment & phosphorus reduction goals: Northern Lakes, Christina/Pelican Lakes, Pomme de Terre River Lakes Chain, Pomme de Terre River Corridor, and Drywood Creek. Plans include but aren't limited to: water & sediment control basins, alternative tile intakes, shoreline restorations/stabilizations, critical area plantings, grass waterways and SSTS upgrades.
This project will develop feasibility analysis, a drawdown plan for Malmedal Lake and an analysis of available options for fish barriers in the watersheds of Malmedal Lake and Strandness Lake.