In this Phase 4 of our ongoing "Living Lakes" program to enhance shallow lakes and restore wetlands, DU successfully enhanced 5,952 acres of shallow lakes and wetlands and restored 59 acres of wetlands by completing 16 separate projects for waterfowl and other wildlife in the Prairie, Transition, and Metro Sections in partnership with Minnesota DNR, U.S. Fish & Wildlife Service, and private landowners.
This Phase 9 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,440 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 10 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,325 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 8 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,070 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent USFWS easement. Where required, DU engineers will design water control structures to restore wetland hydrology and allow active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in Minnesota's Prairie Pothole Region.
Provide approximately 15 matching grants for local parks, trail, acquisition of natural areas and trails to connect people safety to desirable community locations and regional or state facilities.
The goal of this project is to develop a Total Maximum Daily Load (TMDL) for all impaired stream reaches and lakes within the Long Prairie and Red Eye Watersheds.
This project will provide surface water quality data to the Minnesota Pollution Control Agency (MPCA) to inform the Watershed Restoration and Protection Strategies (WRAPS) update process. All locations are in the Douglas County portion of the Long Prairie Watershed. Sites have been targeted based on local knowledge and citizen concerns. A culvert inventory will also be completed through this project. This will provide flow path data that will be utilized in future water quality analysis and project designs.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This project is to finalize the Total Maximum Daily Loads (TMDLs) and Watershed Restoration & Protection Strategies (WRAPS) for the Red Eye and Long Prairie Watersheds.
This funding will be used to help fulfill the goals established in the Long Prairie CWMP. Approximate goals addressed are listed with the activities addressing them. Anticipated projects to be implemented include agricultural waste management facilities, agricultural land management, exclusion fencing, rain gardens, subsurface sewage treatment upgrades, shoreline restorations, and forestry. Other projects will be considered as opportunities arise.
A long-term project to protect Minnesota's only population of ball cactus has begun successfully. To cement this success, population expansion/establishment will finish and long-term volunteer monitors will be trained.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
To enhance access to artistic, cultural and educational programming by building a shelter for shows and demonstrations. Programming will include cultural music, presentation on the Sioux Uprising, the Tracy Tornado, and a Lyon County Centennial Farm recognition program.
To offer a Minnesota history experience through exhibitions by the Timberworks Lumberjacks. Fairgoers will have an opportunity to learn more about logging history in Minnesota and watch demonstrations of crosscutting, log rolling, chopping, tree climbing, etc.
Leveraging new statewide climate data, we will assess future change in the duration, frequency and magnitude of heavy precipitation and drought events and engage communities to prepare for these extremes.
To hire qualified consultants to evaluate the Marshall-Lyon County Library, now used as the Lyon County Historical Society, for possible inclusion in the National Register of Historic Places.
The ENRTF grant will introduce 12 young people to conservation careers through full-time, paid internships and apprenticeships on the Minnesota Valley National Wildlife Refuge (16 FTEs over 2 years).
This project includes a new exhibit component that includes a variety of farm production machinery, diverse agriculture commodities, and livestock, and provides an interactive learning experience about agricultural production and the art of manufacturing food for every culture.
Expanding waste diversion practices across the state this project will: create 16 jobs, reduce greenhouse gas emissions, provide data to measure the social, economic, and environmental benefits of waste diversion.