The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The Works Museum will design, fabricate, and install a new exhibit with partners from Minnesota's East African, Hmong, and Latinx communities that forwards elementary education goals and celebrates Minnesota's rich cultural diversity.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Kairos Alive! Cultural Wisdom Immersion and Sharing Project collaborates with Centro Tyrone Guzman, Augustana Open Circle, Walker West Music Academy and outstate Developmental Achievement Centers to explore and exchange joyful cultural meaning through music, dance, song and story via 2-way Zoom webcast. Project explores cultural heritage and identity expression, and how it relates to the universality of human experience, in an environment of creative safety and intercultural exchange.
This project collaborates with 1) Minneapolis Hawthorne Neighborhood Council (multi-cultural/intergenerational); 2) Minnesota Independence College and Community (MICC), Richfield (neuro-divergent young adults); 3) an established network of 20+ senior centers and organizations serving people with developmental disabilities statewide (multi-cultural and intergenerational), such as Centro Tyrone Guzman (Latinx), Ecumen Prairie Lodge, Brooklyn Park, Wabasha County Developmental Achievement Center, Wabasha, and Adult Day Services, Bemidji; 4) community collaborations in Bemidji and New Ulm servi
Lac qui Parle-Yellow Bank Watershed District will collect water chemistry samples from the three lakes and twenty-nine stream sites in the Lac qui Parle and Minnesota Headwaters watersheds following the MPCA’s Intensive Watershed Monitoring (IWM) plan for lakes and streams. Eleven samples will be collected at each lake from May through September during 2015 and 2016. Eleven samples will be collected at each of the twenty-nine stream sites in 2015. In addition, sixteen samples at each stream site will be collected in 2015 and 2016 following the E.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
This project will complete data collection on 11 lakes over a 2 year period in the Pomme de Terre Watershed. The data collected will be be used in the Major Watershed Project proposed for this watershed.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.