Per Minnesota Laws, 2011, 1st Special Session, Chapter 6, Article 4, Section 2, Subd. 6, "These amounts are appropriated to the commissioner of administration for grants to the named organizations for the purposes specified in this subdivision.
Per Minnesota Laws, 2009, Chapter 172, Article 4, Section 2, Subd. 5, "Funds in this subdivision are appropriated to the commissioner of the Department of Administration for grants to the named organizations for the purposes specified in this subdivision. Up to one percent of funds may be used by the Department of Administration for grants administration. Grants made to public television or radio organizations are subject to Minnesota Statutes, sections 129D.18 and 129D.19."
This project proposes to increase the adoption of cover cropping in southwest Minnesota to address issues of loss of diversity and environmental degradation. By generating important information on cover crops,
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by conducting water chemistry monitoring at two specified stream locations from ice out through October 31, capturing snow melt, rainfall events and base flow conditions. In addition, project staff will compile and submit the required data, information, and reports, and calculate pollutant loads using the FLUX32 model.
To strengthen a large partnership, including American Indian partners, as they improve and make available more historic information about the Minnesota River Valley.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Enhance knowledge of Minnesota's native aquatic plant biodiversity, the backbone of healthy aquatic systems, by delivering data products that support conservation, protection and management for decision-makers and scientists.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The Kairos Alive! Cultural Wisdom Immersion and Sharing Project collaborates with Centro Tyrone Guzman, Augustana Open Circle, Walker West Music Academy and outstate Developmental Achievement Centers to explore and exchange joyful cultural meaning through music, dance, song and story via 2-way Zoom webcast. Project explores cultural heritage and identity expression, and how it relates to the universality of human experience, in an environment of creative safety and intercultural exchange.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
This Phase 6 request for Ducks Unlimited’s Living Lakes program will enhance 1,000 acres of shallow lakes and restore 50 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will be used by DNR and Service partners to restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in the Prairie Region of Minnesota.
Ducks Unlimited successfully enhanced 3,437 wetland acres and restored 83 wetland acres through this grant, which significantly exceeds our grant acre goals of 2,000 acres of wetland enhancement and 50 acres of wetlands restored for this 2017 OHF appropriation.
This Phase 7 request for Ducks Unlimited's Living Lakes program will enhance 1,160 acres of shallow lakes and restore 120 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will help DNR and Service agency partners restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in Minnesota's Prairie Pothole Region.
Phase 2 of Ducks Unlimited's ongoing engineering program restored and enhanced shallow lakes and wetlands by installing water level control structures to improve aquatic plant abundance and water clarity in partnership with the Minnesota DNR and U.S.
This Phase 9 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,440 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 10 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,325 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 8 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,070 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent USFWS easement. Where required, DU engineers will design water control structures to restore wetland hydrology and allow active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in Minnesota's Prairie Pothole Region.
Provide approximately 15 matching grants for local parks, trail, acquisition of natural areas and trails to connect people safety to desirable community locations and regional or state facilities.