This project will provide monitoring of four of the major watersheds (8-digit Hydrologic Unit Codes) in the western part of the Rainy River Basin. Staff from the Lake of the Woods SWCD will conduct water quality sampling, review, manage and provide collected data to the Minnesota Pollution Control Agency (MPCA).
The Rainy River - Rainy Lake, Rainy River - Baudette and Rapid River Watershed Assessments will include the waters of the Baudette River, Black River, Peppermint Creek, Rapid River, Rat Root River and Winter Road River in Koochiching and Lake of the Woods Counties. This assessment focuses on collection of water chemistry and field parameters at the 12 key sites identified and modified by the Minnesota Pollution Control Agency (MPCA). Five of the sites will have extra total phosphorus and chlorophyll analysis completed as identified by the MPCA for collecting river nutrients.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project is a fall 2024 exhibition of art created by self-identifying Latina women and non-binary, Latinx Minnesota-based artists with ancestral roots in Latin America. The exhibition is being co-curated by local visual artist, community muralist and educator, Zamara Cyan, and William Gustavo Franklin, an independent art curator, educator and author of the recent volume, Latin Art in Minnesota Conversations and What's Next (Afton Press, 2023).
This project will initiate the process of community engagement in the LeSueur River watershed by assessing the needs and interests of the community and bringing a diverse set of stakeholders together to determine how best to foster action in improving and protecting water quality.
Minnesota Departments of Information Technology Services (MNIT) and Minnesota Pollution Control Agency (MPCA) are partnering with the United States Geological Survey (USGS) to acquire high-resolution digital elevation data developed from airborne lidar (Light Detection and Ranging) for the Minnesota River East and West regions. The data will be used to generate Digital Elevation Models (DEMs) for use in engineering design and design reviews, conservation planning, research, delivery, floodplain mapping, and hydrologic modeling utilizing lidar technology.
Four stream segments, totaling over 100 miles, are impaired in the Little Fork River for Total Suspended Solids (TSS) and this study will provide local partners with project options for reduction of sediment in the Little Fork Watershed. Through the use of sediment fingerprinting determinations can be made if the sediment is from in or near channel, or the watershed and identify what sub-watershed the sediment is coming originating.
The sediment fingerprinting design will be custom fit for the unique geology and land-use history in the Little Fork River Watershed. The design will identify potential sources of sediment pollution within the watershed, including soil erosion from upland forests and wetlands from subwatersheds with different glacial deposits and bedrock geology, gullies, riverbanks, and bluffs. This will enable local partners to field verify potential BMP locations with private and public land owners to mitigate sediment inputs to the Little Fork Watershed.
This phase one project is to develop an understanding of sediment transport and fate in the Little Fork River system through the use of sediment fingerprinting and a sediment budget by setting up sampling sites for target sediments and source sediments.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
The Little Fork River and Big Fork River - USGS FLOWSED project was established to collect site specific data for streamflow, SSC, and bedload at the Littlefork and Big Fork Rivers in Northern Minnesota; use the data to evaluate the use of dimensionless sediment rating curves for the rivers; and document the results of the study in conjunction with the results from other rivers in the state for the application of regional sediment rating curves to rivers in Minnesota.
Four stream segments, totaling over 100 miles, are impaired in the Little Fork River for Total Suspended Solids (TSS). This study will provide local partners with project options for reducing sediment in the Little Fork Watershed. Through the use of sediment fingerprinting determinations can be made if the sediment is from in (or near) channel, or the watershed and identify what sub-watershed the sediment is coming originating.
The Little Fork River Watershed Assessment will include the waters of the Rice River, Little Fork River, Flint Creek, Nett Lake River, Beaver Brook, Valley River, Willow River, Sturgeon River, Bear River, Dark River, and the Lost River. This Assessment will also include Little Bear Lake, Bear Lake, Thistledew Lake, Little Moose Lake, Raddison Lake, Napoleon Lake, Owen Lake, Dark Lake, Clear Lake, Long (Main) Lake, Dewey Lake, and Long (North) Lake. These lakes and streams are found throughout the Little Fork River Watershed, which spans parts of Koochiching, St. Louis and Itasca Counties.
The purpose of this project is to re-calculate the Littlefork river sediment Total Maximum Daily Load (TMDL) utilizing the 15 mg/L Total Suspended Solids (TSS) standard and update the associated Littlefork Watershed Restoration and Protection Strategies (WRAPS) document.
Phase 2 of Ducks Unlimited's ongoing engineering program restored and enhanced shallow lakes and wetlands by installing water level control structures to improve aquatic plant abundance and water clarity in partnership with the Minnesota DNR and U.S.
This Phase 9 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,440 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 10 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,325 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
Provide approximately 15 matching grants for local parks, trail, acquisition of natural areas and trails to connect people safety to desirable community locations and regional or state facilities.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA constructs watershed models. These models support the development of TMDL studies for multiple listings within a watershed. In 2017 the Lake of the Woods (LOW) watershed HSPF model was extended through 2014.
The purpose of this work is to develop a Watershed Restoration and Protection Strategy (WRAPS) and associated Total Maximum Daily Load (TMDL) documents for the Lower Rainy River and Rainy River Rainy Lake Watersheds.
The goal of the Dakota History Symposium at Lower Sioux Agency is to reclaim Dakota voice in a narrative that under-represents Dakota perspective and cultural worldview while providing opportunity for exiled Dakota to reconnect to their shared history, disrupting dominant power dynamics that restrict Dakota truth-telling. Hosting a Dakota-led educational event will enhance public understanding, broaden worldviews perspective and increase access to historic truths of the State of Minnesota.
Katha Dance Theatre (KDT) will produce a mainstage program of three world premiere dance concerts to share the art, culture, and history of India through the art of Kathak dance - the 2,000-year-old classical dance style of North India. These productions will include the world premiere of GANGA. The Myth and Reality, the world premiere of PANCHATANTRA, and the world premiere of PRAKRITIR PRATISODH Nature's Revenge. The first will premiere in St. Paul, the second in Minneapolis, and the third will play in another Twin Cities venue (TBD).
Leveraging new statewide climate data, we will assess future change in the duration, frequency and magnitude of heavy precipitation and drought events and engage communities to prepare for these extremes.