The St. Cloud Waste Water Treatment Facility (SCWWTF) is currently conducting long term planning for future biosolids management. The most likely path forward includes dewatering of the digested biosolids, which will produce a supernatant stream with significant phosphorus and ammonia loads that would be returned to the liquids treatment portion of the WWTF. Returning these nutrient loads to the liquids train would result in increases to effluent concentrations, increases in power consumption, or both.
The City of Cold Spring is looking to retrofit 24 acres of existing development within a 138 acre subcatchment of the City to improve the water quality of Cold Spring Creek, a designated trout stream. The large amounts of hard surfaces within the subcatchment area do not allow for rainfall or snow melt to soak into the ground. The stormwater carries with it sediment, bacteria, automotive fluids, and other pollutants. Cold Spring staff has frequently witnessed sediment plumes, the color of chocolate milk, at the storm sewer outfalls.
The project goal is to conduct water chemistry monitoring at five subwatershed sites and two basin sites annually from 2016-2019, based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
The purpose of this project is reduce peak flows in the North Fork of the Crow River through culvert sizing. Culvert sizing will typically result in smaller culverts, which will provide short-term temporary storage within channels and on adjacent lands upstream from road crossings. In addition to reducing peak flow rates, flood damage and downstream erosion, increased sediment and nutrient removal through extended detention time is expected.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
The goal of this project is to develop a phosphorus TMDL for the six impaired lakes in the southwest portion of the Rice Creek Watershed District; Island Lake, Little Lake Johanna, Long Lake, East Moore Lake, Pike Lake and Lake Valentine.
The primary focus of this project is the collection of lake core samples to aid in the completion of lake TMDLs for Dean, Malardi & Fountain lakes. This work will enable completing tasks included in the North Fork Crow River Watershed Restoration & Protection Project (WRPP). Additional data collection is needed to update lake response models. This new data will provide a cohesive and comprehensive data collection for Dean, Malardi and Fountain lakes.
This project will educate the local residents of the importance of groundwater protection and provide financial assistance to those who need to properly abandon their unused well. This project will also support the upgrade of nonconforming sewage treatment systems to reduce nutrient contributions to groundwater and surface water through groundwater permeation.
This project will continue the restoration of Osakis Lake and protect the water quality of the Sauk River by addressing stormwater runoff from urban and rural areas. Activities include assisting eight landowners in designing and funding their shoreland restoration and rain garden projects.
This project will evaluate and prioritize approximately 13,000 lineal feet of Lake Koronis shoreline for shoreline erosion and vegetative buffer condition. Those property owners with the most erosion, stormwater and vegetative buffer issues will be targeted to stabilize, infiltrate and buffer their shoreline. This project will also evaluate an additional 300 properties in the subcatchment area and target those properties that are best able to capture and treat stormwater from impervious surfaces.
The Sauk River Watershed District (SRWD) is the drainage authority for Stearns and Pope Counties. The SRWD manages 12 public drainage systems totaling over 90 miles. The majority of the public systems provide drainage for agricultural land uses and were constructed in the early 1900s.
The Stearns County SWCD Enhanced Shoreline Restoration, Infiltration and Protection Program has accelerated natural resource restoration projects in Stearns County. The project partners are assisting in recruiting landowners to implement shoreline restoration, erosion control and infiltration projects to protect and improve water quality as well as fish and wildlife habitat. We have prioritized projects based on location and impact. The site will be ranked as a higher priority if the it is located near a body of water that has been listed as impaired or has an approved TMDL.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This grant will cover all components of water chemistry sampling for pollutant load monitoring at four sites. Of those four sites, two of them are subwatershed sites that will be monitored seasonally and two of them are basin/major watershed sites that will be monitored year round. The Monitoring Coordinator for the Sauk River Watershed District will be responsible for sample collection, data management tasks, attending weekly call in meetings and will coordinate additional help from other staff members and/or interns if needed.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
A watershed assessment and water quality treatment plan was completed for the impaired Lake George . This project will address the watershed practices portion of the water quality treatment plan. One regional underground stormwater detention/filtration treatment facility treating a 47-acre drainage area will be installed in partnership with the Tech High School Redevelopment Project. The underground facility will target phosphorus reduction reducing an estimated 27 pounds of phosphorus and 7 tons of sediment annually.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
The purpose of this monitoring project is to maintain water quality data collection, build upon existing data for Phase II of the Intensive Watershed Monitoring approach, and develop a better understanding of what impacts the rivers located in central Minnesota specifically in the North Fork Crow Watershed.
Mankato State University (MSU) will work with the Minnesota Pollution Control Agency (MPCA) and the Minnesota Department of Agriculture (MDA) to plan a stakeholder process kick off meeting for the Minnesota River Ag/Urban partnership project. MSU will help to plan and facilitate the meeting.
Phase 1 of this project is primarily geared towards project planning and coordination among project partners, developing an initial civic engagement strategic plan, holding a watershed kick-off meeting, and gathering and summarizing available water quality data.
This project will develop a Watershed Restoration and Protection Strategy (WRAPS) report as well as Total Maximum Daily Load (TMDL) studies where needed. The TMDLs will provide the quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for the impairments within the watershed. Strategies for protecting the unimpaired waters within the watershed will also be included.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
MECA will offer day sessions intended to educate permittees on the requirements for the MS4 permit. The sessions will be held in Vadnais Heights, Detroit Lakes, St. Cloud, St. Paul and Mankato Minnesota.