GCST 1970 is a 4-credit program for college & high school students in partnership with the YMCA & Three Rivers Park District to learn about their cultural heritage & connection to the land. This collaboration brings under-represented students to a wilderness camp to engage in nature, environmental justice and issues of equity, access, and inclusion in outdoor spaces. Students participate in 5 days of immersive learning in and from nature, from each other, & from local tribal elders and artists.
This project will create and optimize eDNA assays to detect the presence of 8 endangered or threatened mussel species around Buffalo Slough near Prairie Island Indian Community.
Geologic atlases provide maps/databases essential for improved management of ground and surface water. This proposal will complete current projects and start new projects to equal about 4 complete atlases.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
Per Minnesota Laws, 2011, 1st Special Session, Chapter 6, Article 4, Section 2, Subd. 6, "These amounts are appropriated to the commissioner of administration for grants to the named organizations for the purposes specified in this subdivision.
Per Minnesota Laws, 2009, Chapter 172, Article 4, Section 2, Subd. 5, "Funds in this subdivision are appropriated to the commissioner of the Department of Administration for grants to the named organizations for the purposes specified in this subdivision. Up to one percent of funds may be used by the Department of Administration for grants administration. Grants made to public television or radio organizations are subject to Minnesota Statutes, sections 129D.18 and 129D.19."
This project will support new exhibit components, including an agriculture heritage exhibit, that will showcase the farming way of life and the importance of family farms for the country's food source. It includes workshops and hands-on learning in roles such as gardener, farmer, processor, seed agronomist, farmers market vendor, and consumer.
This project proposes to increase the adoption of cover cropping in southwest Minnesota to address issues of loss of diversity and environmental degradation. By generating important information on cover crops,
With this appropriation, the Minnesota Land Trust plans to protect approximately 500 acres of critical shoreline habitat along Minnesota's lakes, wetlands, rivers, and streams by securing permanent conservation easements and dedicating funds for their perpetual monitoring, management, and enforcement. Lands being considered for permanent protection in this round of funding are located in Becker, Beltrami, Blue Earth, Itasca, Kandiyohi, Lac Qui Parle, Le Sueur, Otter Tail, Pope, and Wabasha counties.
There funds are enabling Pheasants Forever to acquire in fee title approximately 86 acres of habitat along the borders of existing Wildlife Management Areas (WMA) or Waterfowl Production Areas (WPA) in LeSueur, Lincoln, or Rice counties and convey the lands to a public agency for long term stewardship and protection. These strategic acquisitions will leverage and expand the existing habitat, water quality, and recreation benefits already provided by existing protected lands.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
To strengthen a large partnership, including American Indian partners, as they improve and make available more historic information about the Minnesota River Valley.
To hire a qualified specialist to conduct a conditions assessment of the Oberholtzer Estate's historic stonework on Mallard Island, listed in the National Register of Historic Places.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
This project will construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs) at the Big Fork River and Little Fork River watersheds.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Enhance knowledge of Minnesota's native aquatic plant biodiversity, the backbone of healthy aquatic systems, by delivering data products that support conservation, protection and management for decision-makers and scientists.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Maintenance of the Ojibwe language and culture classes, along withi participatioin in Ojibwe Quiz bowls, classroom presentations, language tables and Ojibwe cultural immersion camp, are essential for continued success of American Indian students and ensures a positive reinforcement of the self-image of American Indian students. The Dakota and Ojibwe Language Revitalization Grant will be monitored by the ISD 361 Indian Education staff and parent committee. Quarterly meetins will take place to monitor the program.