Water quality and flood damage reduction goals can't be accomplished without reducing flows and taking a targeted approach to the upper most reaches of the most critical waterways. Water and sediment control basins are eartern structures that retain water and have been identified as one of the best tool for measured success in reducing peak flows. For this project, basins will be targeted and implemented in the Upper Cedar River Watershed, specifically in the Dobbins Creek Watershed.
With a population of 162,000 that expands by approximately 300,000 annually through tourism, the Brainerd Lakes area is truly a beloved “up north” destination in Minnesota. Brainerd’s emerging Region 5 Children’s Museum (working title) envisions a more connected Minnesota and will actively bring together people from diverse backgrounds in shared experiences through the exploration of northern Minnesota’s rich art, culture, and heritage.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.
The Clean Water Fund (CWF) and Outdoor Heritage Fund (OHF) were used together to secure easements on buffer areas. 25 easements have been recorded for a total of 672.1 acres and are reported in the output tables for the final report (acre total does not include Clean Water Fund acres). The total acreage from both CWF and OHF sources for recorded easements is 1,152.4 acres. Only the OHF acres are being reported in this final report to be consistent with the approved accomplishment plan.
Under the CREP partnership with USDA, 28 easements were recorded on a total of 2,390 acres to restore previously drained wetlands and adjacent uplands. Two easements are RIM wetland easements that were required to complete wetland restoration work on an adjacent easement secured with 2018 Wetlands funding. The landowners received the RIM-Only payment rate. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for landowner payments and conservation practices.
The Clean Water Fund (CWF) and Outdoor Heritage Fund (OHF) were used together to secure easements on buffer areas. 84 easements have been recorded for a total of 1,441 acres and are reported in the output tables for the final report (acre total does not include Clean Water Fund acres). The total acreage from both CWF and OHF sources for recorded easements is 2,793.2 acres. Only the OHF acres are being reported in this final report to be consistent with the approved accomplishment plan.
This continuation of the Reinvest in Minnesota (RIM) Reserve buffers program will protect and restore riparian areas, permanently protecting approximately 600 acres on 17 easements. This program will continue utilizing a science-based ranking and selection process and be implemented locally, working with Soil and Water Conservation District (SWCD) staff in targeted areas in the state. Historically, buffer funding was used to expand basic water quality buffers into larger buffers.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
This grant will fund about 80 project in six sub-watersheds (Headwaters of the Middle & South Branch, Money Creek, Headwaters of Upper Iowa River, Mill Creek, south Fork Root River, and Carey Creek). Projects to include grassed waterways, water and sediment control basins, grade stabilization structures, livestock waste projects, streambank projects and cover crops. Funding will also support staff time for project development and technical assistance for the cost-share projects.
This grant will fund an expected 44 projects in 4 subwatersheds (South Fork Root River, Crooked Creek, Rush-Pine and portions of the headwaters of the Middle and South Branch Root) and 2 DWSMAS (Chatfield and Utica). Projects include grassed waterways, WASCOBs, grade stabilization structures and cover crops, plus field walkovers, project development, and technical assistance. The anticipated sediment reduction from this work will be 2,285.5 tons, or 2.2% of the 10-year goal for the entire planning area.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
This project aims to mitigate flow and nitrate impacts from agricultural drainage to the Root River through the installation of a suite of multi-purpose drainage management practices.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
to install a 16 panel photovoltaic system located on the northwest side of the Ruby Rupner Auditorium including a data acquisition monitoring system to help educate students and the public
The purpose of the project is to collect data to represent the ambient condition of the lakes and streams of the Rum River Watershed within Mille Lacs, Isanti and Sherburne Counties that is needed to determine if thresholds set to protect designeated uses, such as aquatic recreation and aquatic life, are being met .
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality in the Rum River Watershed. Local Partners will lead various portions of this project and a hired onsultant will be subcontracted to write selected TMDL protection plans.
This project will focus on Watershed Restoration and Protetion Strategy (WRAPS) and Total Maximum Daily Load (TMDL) report development for the Rum River Watershed, which includes Mille Lacs Lake (the second largest lake in Minnesota) and the Rum River of which Mille Lacs Lake is the headwaters. The project will produce a plan that partners and citizens will be able to implement, a framework for citizen engagement, and a set of watershed management activities that will achieve water quality standards for all impairments within the watershed.
Sandhill cranes have expanded their range in Minnesota and elsewhere and as populations have expanded several states, including Minnesota, have initiated sandhill crane hunting seasons and other states are considering doing the same. Partially this is in response to increasing complaints of crop degradation by sandhill cranes.
The goal of this project is to compile the observed flow and water quality data and update the Sauk River Watershed HSPF model calibration through 2019. The Sauk River Watershed HSPF model simulates hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and chlorophyll a.
This work order will extend all of the timeseries in the Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2019. The Sauk River Watershed HSPF model simulates hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and chlorophyll a.
This project will complete an assessment of watershed lakes and streams. The assessment will include biological and stressor id analysis, which will support a summary report on lake conditions and protection strategies for lakes included in this watershed study.