To support and assist central Minnesota artists at various stages in their careers by providing them with opportunities to attend trainings workshops or conferences that would help them to advance their skills as an artist.
The New HCC Storefront Museum Implementation Project will involve the development of a guided tour app & new curriculum for school groups based on MN's K-12 standards. The project will also include a new strategic marketing plan to assist the museum in achieving future attendance & outreach goals. Finally, a new tour guide will be hired to meet public demand for tours in the new museum space which is intended to promote cross-cultural awareness and understanding of Hmong culture and history.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
Construct, calibrate, and validate three Hydrologic Simulation Program FORTRAN (HSPF) watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs).
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
Osprey Wilds Environmental Learning Center will provide meaningful, hands-on environmental education learning opportunities to underserved rural and metro area children through our day-use and residential summer camps.
Demand for Engineering services in Northeast Minnesota's nine-county Area III Technical Service Area is exceeding the capacity to deliver the needed services. There are increased requests from Soil and Water Conservation Districts for engineering needed to design and install Best Management Practices in part due to requests related to Clean Water Fund projects. These funds will be used to hire an engineer, which will increase engineering capacity and result in the completion of at least five additional projects per year.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project encompasses surface water quality sampling within the Snake River Watershed over a period of two years (2017-18). This is the cycle II monitoring as follow-up to the original Snake River Watershed monitoring 10 years ago as part of the Watershed Restoration and Protection Strategy Report (WRAPS). This project shall provide follow-up data on the waters in the Snake River Watershed in regards to changes in water quality over this 10-year cycle. The current sampling project will entail sampling 5 lakes and 11 stream sites.
The purpose of this work is to develop Total Maximum Daily Loads (TMDLs; a federal clean Water Act requirement) for streams and lakes in the Kettle River and Upper St. Croix watersheds. This and other technical information will be used to develop a separate report called a Watershed Restoration and Protection Strategy (WRAPS) report.
Starting in 2016 the Minnesota Pollution Control Agency (MPCA) will be collecting monitoring data on many lakes and streams in the Kettle River and Upper Saint Croix Watersheds. While this information will be useful to assess the overall health of the watershed, it will miss locations in the watershed that can provide critical information to local implementers, local governments, and citizens.
After completing the One Watershed One Plan planning process for the Kettle & Upper St. Croix Watershed, and having the Kettle & Upper St. Croix Comprehensive Watershed Management Plan (KUSC CWMP) approved by BWSR, the local partners of the watershed will use the implementation funds to complete the actions in the plan. These actions will help complete the 10-year goals that are laid out in the plan. This in turn will help protect and restore water and soil resources in the Kettle & Upper St. Croix watersheds.
This project will provide information about the amount and sources of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and reduce the amount of phosphorous flowing into Lake St Croix by implementing phosphorous reduction activities. The St Croix River Association (SCRA) will coordinate with the St. Croix Basin Water Resources Planning Team (Basin Team) on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St. Croix portion of the St.
This project will develop an Implementation Plan for restoring Lake St. Croix and impaired waters within the contributing watershed, and protect waters currently attaining water quality standards.
The purpose of this project is to gain additional information about the amount of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and/or to reduce the amount of phosphorous entering Lake St Croix by the implementation of projects that will reduce phosphorus loadings. The St. Croix River Association (SCRA) will coordinate with a subgroup of the St. Croix Basin Water Resources Planning Team and other local resource experts on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St.