The Chippewa River Watershed planning partnership has based its comprehensive watershed management plan (CWMP) on six planning regions. Each planning region has a list of prioritized and targeted resource concerns, measurable goals, and implementation actions. Implementation actions will be focused based on the CWMP on the highest and medium priority practices in locations within each planning region, which were prioritized based on local concerns, programs, etc.
The goal of this project is to extend the input timeseries for the existing Crow Wing, Redeye, and Long Prairie, watershed Hydrologic Simulation Program FORTRAN (HSPF) models and refine the calibration.
This project will conduct water quality monitoring at 12 stream sampling sites. The sites will be monitored for chemical, physical, and bacteriological parameters over a two year time-period. The Headwaters Science Center (HSC) will be the lead agency and arrange volunteer cooperation from Trek North, Bemidji, Perham and/or Detroit Lakes High School students and their instructors. The HSC project lead will be responsible for oversight and full compliance to MPCA protocols.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Otter Tail County will partner with the Buffalo-Red River Watershed District and the West Otter Tail and Wilkin SWCDs to stabilize the outlet of Judicial Ditch No. 2 which has become the most critically eroding gully contributing sediment to the Otter Tail River. When stabilized, sediment to the river will be reduced by 988 tons per year, and total phosphorus will be reduced by 840 pounds per year. The sediment reduction associated with this project is 7 percent of the 6,868 tons per year goal set by the Lower Otter Tail River Total Maximum Daily Load.
Lake Seven is located in Otter Tail County and is a waterbody of statewide significance, often leading the north central hardwoods forest ecoregion in water clarity. Lake Seven has also been identified by DNR Fisheries staff as one of 77 refuge lakes with the potential to maintain tulibee populations into the future given sufficent watershed protection and the only one in Otter Tail County.
This project will complete data collection on 11 lakes over a 2 year period in the Pomme de Terre Watershed. The data collected will be be used in the Major Watershed Project proposed for this watershed.
Phase 4 of the Lake Winona Total Maximum Daily Load (TMDL) project will finalize the draft Lake Winona TMDL, dated November 2009, by completing additional data analysis, lake quality modeling, updating the TMDL report, and supporting the public involvement process.
Watershed based implementation funds will be used to target conservation practices utilizing the principles associated with Prioritize, Target and Measure as referenced in our Local Comprehensive Watershed Management Plan. The following are projects/practices, and their associated pollution reduction estimates, that are included in this budget request: (500 acres of Nonstructural BMPs) to protect/improve land management and reduce bacteria will reduce phosphorus by 65 lbs/yr, nitrogen by 520 lbs/yr, and sediment by 285 tons/yr.
The goal of this project is to develop a Total Maximum Daily Load (TMDL) for all impaired stream reaches and lakes within the Long Prairie and Red Eye Watersheds.
This project will provide surface water quality data to the Minnesota Pollution Control Agency (MPCA) to inform the Watershed Restoration and Protection Strategies (WRAPS) update process. All locations are in the Douglas County portion of the Long Prairie Watershed. Sites have been targeted based on local knowledge and citizen concerns. A culvert inventory will also be completed through this project. This will provide flow path data that will be utilized in future water quality analysis and project designs.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This project is to finalize the Total Maximum Daily Loads (TMDLs) and Watershed Restoration & Protection Strategies (WRAPS) for the Red Eye and Long Prairie Watersheds.
This funding will be used to help fulfill the goals established in the Long Prairie CWMP. Approximate goals addressed are listed with the activities addressing them. Anticipated projects to be implemented include agricultural waste management facilities, agricultural land management, exclusion fencing, rain gardens, subsurface sewage treatment upgrades, shoreline restorations, and forestry. Other projects will be considered as opportunities arise.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
Mankato State University (MSU) will work with the Minnesota Pollution Control Agency (MPCA) and the Minnesota Department of Agriculture (MDA) to plan a stakeholder process kick off meeting for the Minnesota River Ag/Urban partnership project. MSU will help to plan and facilitate the meeting.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms. This project continues a 2012 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been impaired for turbidity due to too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat
and feeds algae blooms.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The Otter Tail County Soil and Water Conservation Districts will work to complete individual lake assessments on thirty-eight lakes in Otter Tail County that have enough data for an assessment. These assessments will be incorporated into the County Water Plan and can be used by individual lake associations in completing a lake management plan. These assessments will greatly assist the County and the Soil and Water Conservation Districts prioritize future efforts for water quality improvements and protection projects.
The Otter Tail County Community Conservation Sub-grant Program enables community groups to go beyond planning and take action to protect their water resources. This grant program provides community groups with the means to make positive improvements now, and a venue to grow community and identify further water quality opportunities. Engaging community members in the identification of water protection opportunities helps build connections and foster a stewardship ethic.