South Central Technical Service Area (SCTSA) will use this Clean Water Fund grant to provide Soil and Water Conservation Districts and other local organizations in its eleven-county area with a Geographic Information System (GIS) Technician to assist in using available GIS information to target specific locations where Best Management Practices (BMPs) can be installed to help improve water quality.
This project will install new stormwater treatment practices in neighborhoods directly draining to Coon Lake. The objective is to remove phosphorus, which fuels algae growth, before the water is discharged into the lake. Seventeen potential project sites have been identified and ranked and include curb-cut rain gardens, swales, stabilizing stormwater discharge points, and a basin outlet modification.
This feasibility study will produce strategies for wetland restoration and ditch hydrology changes to reduce the amount of phosphorus and solids that drain into Typo and Martin Lakes, the Sunrise River and St. Croix River. Total Maximum Daily Loads and other plans have identified this area as key for pollutant reduction, and the study will determine scope and effects of potential projects, allowing the district to prioritize those that will have the great impact on water quality.
This project will identify and prioritize opportunities to implement a multipurpose drainage management plan that will provide adequate drainage capacity, reduce peak flows and flooding and reduce erosion and sediment loading, improving water quality to the West Branch Rum River.
This project will install an iron enhanced sand filter (IESF) to restore water quality in Golden Lake. Golden Lake is within a fully developed area of the Twin Cities, surrounded by residential land use, and the focal point of a city park. The IESF will achieve 11% of the phosphorus reduction (21 lbs/yr) required for Golden Lake to meet State water quality standards, as identified in the approved Total Maximum Daily Load (TMDL).
This project will install nearly 800 linear feet of restored lakeshore with an emphasis on bioengineering techniques, native plants and locating buffers/swales at points of concentrated overland flow into Green Lake. By targeting properties that are eroding and/or with concentrated overland flow to the lake we will reduce suspended solids discharge by 16,697 lbs/yr and phosphorus by 1.3 lbs/yr.
Demand for Engineering services in Northeast Minnesota's nine-county Area III Technical Service Area is exceeding the capacity to deliver the needed services. There are increased requests from Soil and Water Conservation Districts for engineering needed to design and install Best Management Practices in part due to requests related to Clean Water Fund projects. These funds will be used to hire an engineer, which will increase engineering capacity and result in the completion of at least five additional projects per year.
This project will result in the installation of give water quality practices totaling 350 linear feet of restored lakeshore and 6,000 square feet of native plant stormwater management. By targeting properties that are eroding and/or with concentrated overland flow to the lake, pollutant discharge to the lake will be reduced.
This grant will fund the creation of a new Coordinator position with a primary focus on the Mille Lacs Lake subwatershed. Although not currently impaired, the Lake faces increasing development and land use pressure. Implementation of protection strategies is essential to the Lake's long-term health but current staffing does not allow sufficient time to be spent on project development and outreach to identify interested landowners.
This Oak Glen Creek stormwater pond expansion and enhancement using an iron enhanced sand filter (IESF) is a partnership between the Anoka Conservation District (ACD) and a private company to protect a downstream corridor stabilization and improve the quality of stormwater discharged to the Mississippi River. Very little stormwater infrastructure currently exists in the 573 acre Oak Glen Creek subwatershed, and it discharges 147,519 pounds of sediment and 353 pounds of phosphorus to the Mississippi River annually.
Golden Lake does not meet state water quality standards due to high phosphorus levels. The proposed iron enhanced sand filter basin was identified in the Golden Lake Subwatershed Stormwater Retrofit Analysis to be one of the most cost effective remaining practices for reducing external phosphorus loads to Golden Lake. This project, paired with two previously installed upstream Best Management Practices, will achieve on average, 84% of the phosphorus reduction goal for the watershed.
The Rice Creek Watershed District (RCWD) will create a web-based, mobile-compatible public drainage system inspection and maintenance database. This database system will enable District staff to create and track maintenance requests and inspections from the field, including Geo-referencing locations requiring repair via a mobile device. The system will greatly reduce the time required to identify and log each maintenance request, enabling staff to inventory more miles of public drainage system yearly thereby identifying erosion problems more efficiently and thoroughly.
The Project and Outreach Coordinator will facilitate efforts within the watershed to provide landowner support and assistance in identifying areas in need of conservation plans and best management practices. The coordinator would use the Watershed Protection and Restoration Strategy Report and county water plans to target and prioritize outreach and education to maximize water quality benefits. This will greatly multiply the number of educated landowners in the watershed and increase the number of projects implemented.
This project is located in an area in the City of Isanti that developed before modern-day stormwater treatment requirements. It will result in the installation of a new stormwater pond in a historic core neighborhood. The urbanized drainage area presently has no other stormwater treatment, except for street sweeping. The new stormwater pond will reduce discharges from a 55 acre site draining to the State Scenic and Recreational Rum River by 12 pounds/yr for phosphorus and approximately 3 tons/yr of sediment.
The Mississippi River is currently listed as impaired for turbidity. Eroding riverbanks are one of the causes of this impairment. An inventory was completed in 2016 of riverbank condition along 5.8-miles of the Mississippi River that is within the City of Ramsey. In this inventory, ten severe to very severe eroding stretches spanning 27 private properties and 6,550 linear feet were identified. Cumulatively, these sites contribute 5,148 tons of sediment per year to the river.