The goal of this project is to collect data, water chemistry and field parameters, which will be paired with biological data collected by the MPCA to assess water quality conditions at seven sites along targeted reaches within the Snake River Watershed and five sites in the Two River Watershed.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
Funds are to be used to protect, enhance and restore water quality in lakes, rivers and streams and to protect groundwater and drinking water. Activities include structural and vegetative practices to reduce runoff and retain water on the land, feedlot water quality projects, SSTS abatement grants for low income individuals, and stream bank, stream channel and shoreline protection projects. For the fiscal year 2012, BWSR awarded 12 local governments with funds.
In 2002, citizens began to notice severe algal blooms in Cedar Lake, a high value recreational lake with exceptional clarity and fisheries habitat. Clearwater River Watershed District (CRWD) began an intensive monitoring program in 2003 to identify nutrient sources and protect Cedar Lake. Through intensive lake and watershed monitoring, CRWD identified the major source of nutrients to the lake. Three nutrient impaired shallow lakes; Swartout, Albion and Henshaw Lakes, in the upper watershed and impaired wetlands discharge excess amounts of soluble phosphorus.
The Villa Park Wetland Restoration Project proposes sediment removal from 6 contiguous stormwater wetland treatment cells within the Villa Park Wetland system resulting in an additional 118lbs/yr of total phosphorus(TP) removal from water entering Lake McCarrons.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
The Wright Soil and Water Conservation District has partnered with the Crow River Organization of Water (CROW) and the Natural Resources Conservation Service on this comprehensive sediment reduction project to focus on stabilizing five of the most active gully erosion sites on the Crow River. A LiDAR study and follow up field inspection identified 15 priority sites within the study area. This particular area was chosen due to the high level of turbidity and low dissolved oxygen within this stretch of the Crow River.
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project will provide Agency staff, local partners and the citizen volunteers with a framework for building local capacity to design civic engagement and communication / outreach efforts. This will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed. MPCA staff, local partners and citizen volunteers will also be able to integrate the results of the biophysical and community assessment into strategies for improving water bodies on the MN 303d List of Impaired Waters
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will construct, calibrate, a set of HSPF watershed models covering the entire area of the Lake of the Woods drainage, including the Rainy River watershed. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output timeseries for hydrology which are consistent with available sets of observed data.
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
The goal of this project is to develop a phosphorus TMDL for the six impaired lakes in the southwest portion of the Rice Creek Watershed District; Island Lake, Little Lake Johanna, Long Lake, East Moore Lake, Pike Lake and Lake Valentine.
The primary focus of this project is the collection of lake core samples to aid in the completion of lake TMDLs for Dean, Malardi & Fountain lakes. This work will enable completing tasks included in the North Fork Crow River Watershed Restoration & Protection Project (WRPP). Additional data collection is needed to update lake response models. This new data will provide a cohesive and comprehensive data collection for Dean, Malardi and Fountain lakes.
This project will provide the MPCA, CCWD, and all other stakeholders the information and tools necessary to improve the water quality within Coon Creek Watershed District. The improvements will take place using targeted activities throughout the watershed to reduce the primary biological and chemical stressors. In turn, the reduction of these stressors will help to reduce overall loadings of sediment, turbidity, total phosphorus, and E. coli bacteria.
This project will construct, calibrate, and validate an HSPF watershed model for the Lake of the Woods River watershed. The consultants will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultants will clearly demonstrate that the models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.