The Wright County Soil and Water Conservation District (SWCD) will implement a targeted fertilizer application program in the Ann Lake watershed, allowing producers to measure soil fertility and apply needed fertilizer more accurately, preventing over-application and consequent runoff of nutrients, especially phosphorus, into surface waters. Phosphorus reduction will help meet the goals of the County's Water Management Plan and the TMDL implementation plan for Ann Lake.
The Wright Soil and Water Conservation District has partnered with the Crow River Organization of Waters (CROW) and the Natural Resources Conservation Service (NRCS) on phase two of this comprehensive sediment reduction project to focus on stabilizing five of the most active gully erosion sites in targeted subwatersheds on the North Fork Crow River, as well as use the installed best management practices to help promote future conservation practices.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Monitoring the health of Minnesota rivers is vital in determining, maintaining, and improving the health of the rivers for the environment and public use. The scope of this project is to collect surface water chemistry samples at designated sampling locations during appropriate time periods and at appropriate frequencies during these time periods for 1 year beginning in February 2015. The data collected and submitted to MPCA will provide information necessary to determine stream characteristics and calculate water quality pollutant loads.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Little Rock Lake Total Maximum Daily Load study has identified areas in the watershed where phosphorus reduction is needed and what best management practices need to be applied. This is a coordinated implementation effort with Benton and Morrison Soil and Water Conservation Districts and Natural Resources Conservation Service, the Little Rock Lake Association, the livestock industry and other partners to install best management practices at numerous sites to continue cleaning up Little Rock Lake.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The Platte River is listed by MPCA as impaired for fish bioassessments and water temperature. It is a recreational river used by many swimmers, paddlers and flotation users. The Platte is a major tributary to the Mississippi River which is the primary drinking water supply from St. Cloud to the Gulf. The Mississippi River segment immediately below Royalton is also impaired and therefore remedial efforts above are imperative.
The City of Annandale intends to implement stormwater infiltration systems to reduce stormwater discharge volumes and to prevent the discharge of nutrients and sediment from urban runoff into local water bodies.
The goal of this project is to continue best management implementation according to the Redwood River Phase II Implementation Plan (1999) and install phosphorus and total suspended solids (TSS) reducing conservation practices that will help achieve the Lower Minnesota River dissolved oxygen Total Maximum Daily Load (TMDL), and the Minnesota River Turbidity TMDL. The proposed implementation of conservation practices include: water and sediment control basins, grassed waterways, grade stabilizations and streambank stabilizations.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The purpose of this project is to create an inventory and priority list of where inlet control and buffer strips are needed along Judicial Ditch 15 to reduce the nutrients, sediment and volume of water being transported by field tile. This will help protect landowner drainage needs, while focusing on applicable best management practices that will reduce on-field and in-channel peak flow erosion. This ditch system is the headwaters to Cokato Lake, which connects to the North Fork Crow River.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.
Locating the sources of sediment, phosphorus, and bacteria is integral to reducing the effect they have on a water body. The completion of the West Fork Des Moines River (WFDMR) Targeting and Prioritizing Endeavor will result in a set of data that is the most cost-effective for the implementation of Best Management Practices (BMPs) for all identified priority resources. The results will be expressed as the maximum reduction of a water quality contaminant (e.g. sediment, phosphorus, bacteria) at a priority resource (e.g. an impaired stream) for a given level of investment.
This monitoring work expands on previously established routine water quality and flow sampling to include extensive fish and aquatic invertebrate surveys. Subsequent steps include assessment of the monitoring data to determine impairments, identification of stressors that are causing impairments, development of Total Maximum Daily Load (TMDL) studies using identification of pollutant sources using computer modeling and other techniques, civic engagement, and public education as approaches in progress towards water quality goals.
This project will allow lake associations and other motivated groups to use their local landowner networks and site specific knowledge to effectively implement best management practices that fit within the greater context of Wright County's Water Management Plan.