This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project will result in the final the Bois de Sioux River Watershed Restoration and Protection Strategies (WRAPS) report and Total Maximum Daily Load (TMDL) study. This work order will authorize the consultant to address all comments received during the public notice period and produce the final WRAPS report for the Minnesota Pollution Control Agency's final approval and a final TMDL study for United States Environmental Protection Agency's (EPA) final approval.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project involves the extension and update of the Hydrological Simulation Program FORTRAN (HSPF) model for the Bois de Sioux and Mustinka watersheds.
This project will address United States Environmental Protection Agency (EPA) comments on the preliminary draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft TMDL study and Watershed Restoration and Protection Strategy (WRAPS) report, and produce the public notice draft TMDL study and the public notice draft WRAPS report ready for public review and comment. Conduct one public meeting for each watershed to present public notice drafts of the TMDL study and WRAPS report for each watershed.
This project will develop a watershed approach plan, including impaired waters allocations, for the Mustinka Watershed, located at the headwaters of the Red River of the North, in western Minnesota, lying partly in Grant, Stevens, Ottertail, Big Stone, and Traverse counties. The watershed approach plan will set water quality goals for the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet state standards and are listed as impaired.
The goal of this project is to extend the existing Chippewa River Hydrologic Simulation Program FORTRAN (HSPF) watershed model. The contractor will produce an HSPF model with meteorological, point source, and atmospheric deposition input timeseries extended through 2020.
The Chippewa River Watershed Association (CRWA) will lead programs to tell a watershed story on the state of our waters and efforts needed to protect or restore them. The CRWA will partner with local offices on existing local educational efforts and will support these types of events. Activities will focus on priority areas and information sharing as outlined in the Chippewa River Watershed Restoration and Protection Strategies (WRAPS) Public Participation Plan.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
The Minnesota Pollution Control Agency (MPCA) developed the Chippewa River Watershed Total Maximum Daily Load (TMDL) report in 2016 that addresses impairments 48 separate impairment listings for 16 stream reaches and 25 lakes in the watershed. The purpose of this project is to support the development of TMDLs for additional streams reaches and lakes that were not previously completed. MPCA has identified 12 waterbodies with aquatic recreation or aquatic life impairments that need to be addressed through the development of new TMDLs.
This project will complete a comprehensive and sustainable Major Watershed Restoration and Protection Strategies report for the Chippewa River, its tributary streams, and the many lakes in the Chippewa River watershed that is understandable and adoptable by local units of government and residents.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will set water quality goals for the Minnesota portions of the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet Minnesota state standards and are listed as impaired, and recommend management strategies for those Minnesota waters meeting state standards. This project also recognizes that as monitoring continues in the watershed, additional impairments may be identified.
This project will allow for outreach programs to engage interested citizens in protecting 200 acres of riparian buffer in the headwaters of the watershed, accounting for 1860 tons of sediment prevented from reaching surface waters each year the practices remain in place. The desired outcome would include 30 or more participants in the program, and to develop a more extensive volunteer base.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
This project will complete data collection on 11 lakes over a 2 year period in the Pomme de Terre Watershed. The data collected will be be used in the Major Watershed Project proposed for this watershed.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This project will develop the Pomme de Terre Watershed Total Maximum Daily Load (TMDL) study for the second round of the 10-year watershed approach cycle in the Pomme de Terre watershed. This phase of the project will address 4 stream impairments and 3 lake impairments and produce a draft TMDL document. A second phase may be needed as the stressor ID report identifies more stream reaches with TMDL relevant stressors.
The goal is to facilitate strategic networking, learning, and participation of targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to become aware of water quality issues and increase best management practice adoption to restore and protect water quality in the Pomme de Terre River watershed. This goal will benefit the completion of the second cycle of the watershed approach by providing useful information important in the completion of Watershed Restoration and Protection Strategies (WRAPS) report.
The Pomme de Terre River Association will partner with the Minnesota Pollution Control Agency to conduct water quality monitoring in the Pomme de Terre River Watershed. The purpose will be to determine if waters meet the states non-point source pollution standards. The data collected will be utilized to produce the cycle two Watershed Restoration and Protection Strategy (WRAPS) report and supporting documents for the watershed. Through the utilization of this funding a total of 11 lakes and 7 stream reaches will be assessed.
This project will establish a framework with the Pomme de Terre River Association (PDTRA), county staff, Soil and Water Conservation District staff, and state agencies that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Pomme de Terre River watershed. This work will form the basis to establish restoration and protection strategies that local governments and watershed organizations can use to make decisions that will lead to protecting and restoring the waters in the watershed.
The goal of this project is to extend through 2016, calibrate, and validate the existing watershed model using Hydrological Simulation Program FORTRAN (HSPF) for the Pomme de Terre River Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) studies.