This project will be a complete TMDL report for the Biota and Bacteria (E. coli) impairments for the Ann River Watershed. The water bodies associated with these impairments will then be removed from the MPCA’s impaired waters list, and implementation activities to restore the water bodies will begin.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
Pine Soil and Water Conservation District is partnering with the City of Sturgeon Lake to seal over 50% of the unused wells in the city limits. The City of Sturgeon Lake recently installed a municipal water supply system, and completed a Minnesota Department of Health approved Wellhead Protection Plan. Residents have connected to the new public water supply system and need to seal their unused wells.
These projects will improve water quality by reducing the sediment and phosphorus delivery to the Kettle and St. Croix River Watersheds and engage and educate municipalities and the public regarding the water quality benefits of shoreline buffers and rain gardens. Phosphorus and sediment delivery to the Kettle River from stormwater runoff at Robinson Park in the City of Sandstone will be reduced by the establishment of a native buffer and repair of the river bank by installing soil wraps implanted with deep rooted native species.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will complete a Watershed Restoration and Protection Plan for the Lower St. Croix River that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, and that are understood and adoptable by local units of government and other stakeholders.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will develop and organize a first- stage civic infrastructure pilot in Kanabec County, within the membership of the PICKM (Pine, Isanti, Chisago, Kanabec, and Mille-Lacs) Alliance, and with other organizations in the St. Croix Basin. The work will be grounded in the need for sustainable citizen engagement in water quality management. Civic leaders participating in this project will build their own skills for organizing people and working in partnership with Kanabec County SWCD staff and the St. Croix Basin Team to achieve water quality goals.
Implementation activities proposed as a part of this project include water quality monitoring, biotic surveys, sediment core sampling, mechanical treatment of curly-leaf pondweed (in accordance with regulations and permitting), an iron-enhanced sand filter, with a high capacity multi-stage outlet weir and 40,000 pounds of iron filings and stakeholder involvement in the design process and educational presentations.
This project will complete a TMDL equation and report and an implementation plan for Deer Creek. The TMDL report will describe turbidity impacts to aquatic life uses of Deer Creek, correlate turbidity to other pollutants (sediment, suspended solids, etc.), describe and quantify unique turbidity/sediment stressors which include groundwater influences, legacy impacts of the watershed and stream channel, significant in-stream and near stream sources (slumps, bank erosion, etc.) and upland contributions.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to supplement and refine the Deer Creek Watershed TMDL Report and Implementation Plan project with detailed determinations of critical source areas and prioritization of the associated management practices, facilitated by additional meetings with local resource managers and validated with a field survey. Completed work will more fully inform the TMDL report and TMDL implementation plan on critical source areas of sediment and quantify those sources.
The Benton County Local Water Management Plan's first priority concern is feedlot and nutrient management. Our objective is to reduce or minimize the negative impact of animal manure and fertilizer on surface and ground water by increasing the adoption of feedlot, manure, fertilizer and pasture best management practices.
This project will create a high accuracy elevation dataset - critical for effectively planning and implementing water quality projects - for the state of Minnesota using LiDAR (Light Detection and Ranging) and geospatial mapping technologies. Although some areas of the state have been mapped previously, many counties remain unmapped or have insufficient or inadequate data. This multi-year project, to be completed in 2012, is a collaborative effort of Minnesota's Digital Elevation Committee and partners with county surveyors to ensure accuracy with ground-truthing.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project will define the major factors causing harm to fish and other river and stream life within the Nemadji watershed. Stressor identification is a formal and rigorous process to identify these factors, explain the linkages between the results of biological monitoring and water quality assessments, and organize this information into a structure of scientific evidence that supports the conclusions of the process. Stressor identification is a component of the Watershed Restoration and protection (WRAP) approach.
The purpose of the project is to collect data to represent the ambient condition of the lakes and streams of the Rum River Watershed within Mille Lacs, Isanti and Sherburne Counties that is needed to determine if thresholds set to protect designeated uses, such as aquatic recreation and aquatic life, are being met .
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality in the Rum River Watershed. Local Partners will lead various portions of this project and a hired onsultant will be subcontracted to write selected TMDL protection plans.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
This project will complete a Total Maximum Daily Load (TMDL) study for the impaired reaches of the Snake River Basin. The project includes development of a Generalized Watershed Loading Function (GWLF) model for nutrient sources and Total Suspended Sediment (TSS), a spreadsheet version of a BATHTUB model of lake response for four lakes, and a bacteria source assessment. Wenck will also provide all stream channel data as a spreadsheet and locational database.
The goal of this project is to assess groundwater sustainability in the I-94 corridor between the Twin Cities and St. Cloud due to the corridor's significant expected growth, the inerent natural limits of groundwater, and the vulnerability of groundwater to contamination.
This project will collect up to one year of water quality and stream flow information on Kelle’s Coulee to aid in the development of the Valley Branch Watershed District Restoration and Protection study. The information being collected by the Washington Conservation District will be used in developing the models necessary to complete the TMDL for Kelle’s Coulee.