The purpose of this program is to engage community groups for the installation of community accessible rain gardens and other water quality best management practices in Ramsey County. The goal is to install 6-12 storm water best management projects that will help protect and improve water quality of surrounding lakes. The installed practices will reduce an estimated 10 acre-feet of storm water runoff, 9 pounds of phosphorous, and 3 tons of sediment annually. Significant measurable outputs, with development of long-term partnerships, are primary objectives for this program.
This project will complete the installation of four nested wells to the Ambient Groundwater Monitoring Network and relocated one well in the City of Saint Paul. Braun Intertec will coordinate site access and oversee the well installation by a state drilling contractor.
The purpose of this project is to re-calculate the Littlefork river sediment Total Maximum Daily Load (TMDL) utilizing the 15 mg/L Total Suspended Solids (TSS) standard and update the associated Littlefork Watershed Restoration and Protection Strategies (WRAPS) document.
The St. Louis River watershed is one of the largest watersheds in northern Minnesota and the largest single contributing watershed to Lake Superior. Surface waters are abundant with 353 lakes and 97 streams segments. Large areas of forest and wetlands help to sustain areas of exceptional water quality. However, land use changes have degraded many lakes, rivers, and streams. 21 stream reaches have aquatic life impairments, as identified by high turbidity (1 reach), poor quality aquatic macro-invertebrate community (16 reaches), and/or poor quality fish community (12 reaches).
This grant will fund the creation of a new Coordinator position with a primary focus on the Mille Lacs Lake subwatershed. Although not currently impaired, the Lake faces increasing development and land use pressure. Implementation of protection strategies is essential to the Lake's long-term health but current staffing does not allow sufficient time to be spent on project development and outreach to identify interested landowners.
Several important milestones will be completed during this phase of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
Several important milestones will be completed during this Phase (Phase II) of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
Little Lake Johanna is not meeting state water quality standards due to excessive phosphorus. The Rice Creek Watershed District, in partnership with the City of Roseville, will improve the water quality of stormwater runoff into Little Lake Johanna through installation of an iron-enhanced sand filter. The Oasis Pond Iron-Enhanced Sand Filter Project will annually remove approximately 34 pounds of phosphorus from runoff to Little Lake Johanna annually. This is equal to nearly 20% of the needed load reduction as established by the Southwest Urban Lakes Total Maximum Daily Load Study.
Golden Lake does not meet state water quality standards due to high phosphorus levels. The proposed iron enhanced sand filter basin was identified in the Golden Lake Subwatershed Stormwater Retrofit Analysis to be one of the most cost effective remaining practices for reducing external phosphorus loads to Golden Lake. This project, paired with two previously installed upstream Best Management Practices, will achieve on average, 84% of the phosphorus reduction goal for the watershed.
This project will provide an important framework for civic and citizen engagement and communication in the International Rainy River-Lake of the Woods Watershed, which will contribute to long-term public participation in surface water protection and restoration activities.
Ramsey County, the most densely populated county in Minnesota, generates high levels of contaminated runoff from its impervious surfaces, which can have damaging effects on both surface water and groundwater. Concerns arise when these contaminants drain into abandoned and unused wells, threatening the quality of groundwater, especially in drinking water supply areas, wellhead protection areas, or groundwater recharge zones.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health with the assistance of the Board of Water and Soil Resources protects both public health and groundwater by assuring the proper sealing of unused wells.” Clean Water funds are being provided to home owners as a 50% cost-share assistance for sealing unused private drinking water wells.
Investigate unlocated or undocumented wells within the DWSMA; Notify owners of large storage tanks located with the DWSMA; Update the City's septic system inventory.
The Ramsey Conservation District is partnering with the Vadnais Lake Area Water Management Organization, St. Paul Regional Water Service, and Ramsey County Parks and Recreation to restore and stabilize approximately 550 linear feet of streambank along the Sucker Lake Channel in northeastern Ramsey County with a cost effective critical area planting, replacing the existing mix of turf grass and asphalt streambank with a native vegetation planting.
The Mississippi River is currently listed as impaired for turbidity. Eroding riverbanks are one of the causes of this impairment. An inventory was completed in 2016 of riverbank condition along 5.8-miles of the Mississippi River that is within the City of Ramsey. In this inventory, ten severe to very severe eroding stretches spanning 27 private properties and 6,550 linear feet were identified. Cumulatively, these sites contribute 5,148 tons of sediment per year to the river.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
Vermilion Community College will assist the Minnesota Pollution Control Agency (MPCA) with meeting the Watershed Restoration and Protection Strategies (WRAPS) development objectives of collecting data and completing watershed assessments for the Rainy River Headwaters, Vermilion River, and Little Fork River watersheds. Services will include providing support for field water monitoring, other field sampling and measurements and related field data management, analysis, and assessments in these watersheds.