This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
This first phase of project will define the existing watershed conditions; identify gaps in existing data; design and implement a plan to address data gaps; incorporate gap data into watershed description; guide development of the HSPF model; establish citizen advisory, technical advisory and locally-based focus groups; research and design an education and outreach strategy; and design and deploy the tools and methods to employ the strategy.
This project will promote positive land use changes, along with a sense of watershed stewardship and awareness throughout the Crow River Watershed. This project contains three main tasks: BMP installation, public outreach and administration. This project will also work with the Big Swan Lake Association in Meeker County to host a shoreline naturalization workshop.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
The Thief River is the source of drinking water for the City of Thief River Falls. The river's other designated uses also include recreation and aquatic life. Water quality monitoring conducted by local agencies discovered that the Thief River is not meeting state water quality standards for both turbidity (muddiness) and dissolved oxygen. Each year, approximately 12,376 tons of sediment is deposited into the Thief River Falls reservoir by the Thief River. That is the equivalent of over 1,200 dump trucks full of dirt.
In the early 1900s, a joint State and County drainage project constructed a 1 mile outlet channel to Grand Marais Creek to provide a shorter outlet to the Red River and effectively abandoned the lower 6 miles of the natural channel. In recent times, the ditch has eroded from its original shape to a channel of steep gradients and unstable banks. This has resulted in head cutting of the channel and nearly continuous channel erosion and bank sloughing with the effect of depositing up to an estimated annual average of 700 tons of sediment into the Red River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Imminent Health Threat (IHT) systems are those that are discharging improperly treated human waste onto the ground surface or into surface waters. In addition to the potential water quality impacts, untreated sewage has the potential to introduce bacteria and viruses into the environment. When IHT systems are identified, county or city staff assist the homeowners through the process required to bring their systems into compliance with the septic ordinance.
Successful long-term treatment of sewage depends on a system capable of providing adequate treatment and effective on-going operation and maintenance. Clean Water Fund Subsurface Sewage Treatment System (SSTS) Program Enhancement and Inventory funds are used by counties to strengthen programs dedicated to SSTS ordinance management and enforcement. These funds are used for a variety of tasks required to successfully implement a local SSTS program including inventories, enforcement, and databases to insure SSTS maintenance reporting programs.
This project will complete the dataset required for assessment of Aquatic Recreation Use at 8 stream sites and 11 lake sites in the Sand Hill Watershed.
This monitoring project will complete assessments of 41 lakes found throughout Beltrami COunty and acquire sufficient data for state/local assessments and also assist with county water planning.
This project will collect water quality data at sites within the Thief River watershed. Nine monitoring sites were chosen at strategic locations along the Thief River and its significant tributaries.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will develop a watershed restoration plan that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed. It will also an important framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.