Little Rock Lake experiences severe algae blooms due to excess phosphorus and these blooms are the worst known regionally. The goal of this project is to reduce algae blooms, improve water clarity, and avoid risk of drinking water contamination. The project will result in installing one farmer nutrient management project , four cover crops, two lakeshore buffer strips, six septic systems that also demonstrated an imminent threat to public health, six erosion control projects , one wetland restored, and one feedlot runoff control system.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
The project will include lake and stream monitoring. Lake monitoring will be completed on twenty lakes found in The Crow Wing River Watershed - West Crow Wing County (CWC) & Southern Cass County for 2020. There will be 11 streams sampled located in Crow Wing, Cass, Wadena and the border of Cass/Morrison Counties 2020 & 2021. The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
This project will determine the magnitude and sources of pollutants in Little Rock Creek and will estimate the reductions in loadings that are needed in order for the stream reaches to support cold water fish assemblages and attain water quality standards.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
This site has been monitored for several years due to past storm events causing flood waters that impacted State Highway 371 and Belle Prairie housing developments. This site is contributing large amounts of sediment and is one of the worst erosion sites identified along the Mississippi River in Morrison County.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.