The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
The overall goal of this project is to perform water quality monitoring duties to accomplish MPCA’s SWAG monitoring efforts at the four sites listed in Section IV of this application for the Middle Minnesota River stream sites selected in Renville, Redwood and Brown counties and allow for the assessment of aquatic life and aquatic recreation use for those reaches of the minor streams.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
This project targets retrofit stormwater Best Management Practices (BMPs) on public land to assist partnering Local Government Units (LGUs) achieve water quality goals identified in local stormwater plans. The Dakota County Soil and Water Conservation District (SWCD) provides technical assistance and distributes Clean Water Funding (CWF) to leverage local funding through its time-proven Stormwater Retrofit Partnership (Partnership) cost share program.
This project is a continuation of the Dakota County Community Initiative, which has received Clean Water Funds in 2012 and 2013. It will provide cost share funding to organizations and associations who voluntarily construct medium sized water quality best management practices (BMPs) in Dakota County.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
The City of Myrtle is an unsewered community in Freeborn County. Thirty-one of thirty-two properties are connected to a community straight pipe, which discharges raw sewage into Deer Creek, a tributary of the Cedar River and are classified as an imminent threat to public health (ITPHS). This project will provide cost-share assistance to 28 low income property owners, who are connected to the City of Myrtle community straight pipe, for construction of individual subsurface sewage treatment systems.
The Faribault Soil and Water Conservation District will provide mini-grants to conservation-conscious community organizations who voluntarily construct best management practices that provide storage and treatment of stormwater runoff at its source.
This project will use the Dakota County Soil and Water Conservation District's existing Conservation Initiative Funding program to provide technical assistance and monetary incentives for targeted, medium-sized projects such as raingardens, bioinfiltration, biofiltration, bioswales, shoreline stabilizations, and other best management practices (BMPs). Project proposals will be solicited from faith based organizations, homeowner associations, school organizations, lake associations, and others that own or manage large areas of land.
The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The Vermillion River Watershed Joint Powers Organization, in partnership with the City of Burnsville, is planning an overall improvement in the Alimagnet Lake subwatershed that consists retrofit two existing stormwater ponds that drain to Alimagnet Lake, a nutrient impaired water, with iron-enhanced sand filter benches. It is estimated that a significant amount of phosphorus reduction will be achieved by implementing this project, bringing Alimagnet Lake closer to state water quality standards.
As part of the Dakota County Transportation Department's highway 78 road reconstruction project, the Vermillion River Watershed Joint Powers Organization is partnering with Dakota County to install a nitrate treatment practice on a tributary to the South Branch Vermillion River adjacent to the road. The South Branch Vermillion River subwatershed is the highest nitrate loading subwatershed in the Vermillion River Watershed and is a significant contributor to contaminated drinking water in the eastern portion of the watershed.
The goal of the Pomme de Terre River Association (JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. The Pomme de Terre River is currently not meeting state water quality for sediment. The purpose of this project is to strategically work towards a 53% sediment reduction goal at the mouth of the Pomme de Terre River based on a Watershed Restoration and Protection Strategy document.
South Creek is a tributary to the Vermillion River and a DNR-designated trout stream. Currently, the creek is not meeting state water quality standards for sediment, temperature and dissolved oxygen The Vermillion River Watershed Joint Powers Organization and the City of Lakeville propose to retrofit an existing stormwater pipe with a hydrodynamic separator to reduce the sediment load reaching South Creek and the Vermillion River. One hydrodynamic separator will be installed and is estimated to reduce sediment loads to South Creek and the Vermillion River by 4 tons per year.
The Vermillion River Watershed JPO is partnering with Dakota County and the City of Lakeville to enhance stormwater management along County Road 50. A treatment train approach with an iron-enhanced sand filter at the tail end to remove dissolved phosphorus will be implemented to treat a drainage area including a portion of the upstream neighborhoods that currently receive little to no stormwater treatment. The practice is anticipated to reduce 20 pounds of phosphorus annually from reaching Lake Marion, a water resource with high recreational value targeted for protection.
South Creek, a tributary to the Vermillion River and a DNR-designated trout stream. Currently, the creek is not meeting state water quality standards for sediment, temperature and dissolved oxygen and it flows through a large stormwater basin in the City of Lakeville. The Vermillion River Watershed Joint Powers Organization, in partnership with the city, propose to create a new channel for the creek in order to separate it from the pond. The result would be significantly cooler temperatures, increased dissolved oxygen, and less sediment-laden water in South Creek.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project will decrease peak flows and associated water quality issues such as sediment and phosphorus on County Ditch 68, Mud Lake, and Fountain Lake. Practices include a 40-acre storage and treatment wetland, two cropped and altered wetland restorations of an acre each, converting 32 acres of cropland to perennial cover, and two grade stabilization structures.