The goal of this project is to continue and finalize Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The project will add representation of point source discharges to the model, compile flow and water quality data for the purposes of calibration and validation. The end result will be an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
The Pope County Water Plan has identified surface water quality and erosion control as top priority resource concerns. These two priorities account for 33% of the phosphorus loading to Lake Emily. The Lake Emily Watershed Best Management Practices (BMP) Prioritization Project will provide GIS-based water quality analysis to assist the Pope Soil and Water Conservation District in determining effective locations for BMP implementation and will prioritize the areas from high to low for phosphorus, nitrogen, and sediment delivery from contributing runoff during rainfall events.
Pope Soil and Water Conservation District, partnered with Natural Resources Conservation Service staff and landowners, will install 22 targeted water and sediment control structures in two priority subwatersheds (Trappers Run and Minnewaska). These structures have the potential to reduce sediment load by 514 tons per year, and phosphorus by 440 pounds per year.
The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
The City of Glenwood Water Quality Assessment & Best Management Practice Prioritization Project will include an assessment and analysis of approximately 1,796 acres affecting water quality and contributing runoff to Lake Minnewaska. By implementing this water quality analysis and assessment of the City of Glenwood and sub watersheds, a reducing pollutants by 1,287 pounds per year of phosphorus and 203 tons per year of sediment.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
The Lake Emily Watershed BMP Targeted Implementation Project will provide funding for 48 water and sediment control projects and potential shoreline and riparian restoration. This work would address surface water quality sources identified in the water plan (Section 2-pg 11) including direct drainage from the Lake Emily sub-watersheds (070200050304, 070200050303, 070200050203, 070200050201, 070200050202) the Little Chippewa, and from upstream discharge between Lake Emily and Lake Minnewaska.
Pope SWCD has 9 motivated landowners with 21 WASCOBs, 1 lined waterway, and 1 shoreline restoration in two priority sub watersheds (Trappers Run and Minnewaska). Based on averages calculated from recently constructed WASCOBs in the West Central Area II these projects have the potential to reduce TSS by 518 T/year, and 446 lbs./year of TP. This project will provide a secondary benefit to improve downstream water quality to Lake Emily. The project will result in meeting 99% of the Lake Emily TP lbs/yr.
The Watershed Restoration and Protection Strategy (WRAPS) is currently being developed for the Minnesota River-Headwaters. Part of the WRAPS and subsequent implementation addresses targeting locations for specific projects (e.g., conservation practices) which are expected to results in measurable water quality benefits for impaired lakes and rivers. Protection strategies are also developed to maintain water quality.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The goal of the Pomme de Terre River Association (JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. The Pomme de Terre River is currently not meeting state water quality for sediment. The purpose of this project is to strategically work towards a 53% sediment reduction goal at the mouth of the Pomme de Terre River based on a Watershed Restoration and Protection Strategy document.
Lake Emily is a high priority recreational lake in Pope County and is currently not meeting state water quality standards due to high phosphorus levels. This project will provide funding for 26 water and sediment control projects with potential shoreline and riparian restoration projects. This work will address surface water quality sources including both direct drainage and upstream discharge. Collectively, these projects have the potential to annually reduce sediment and phosphorus leaving the field which will directly address 15% of Lake Emily's phosphorus reduction goal.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.