This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project is to refresh the Cannon River Watershed Hydrologic Simulation Program FORTRAN (HSPF) model. The previous model was developed for the time period of 1995-2012. This phase will extend the model to include data through 2019. All time series data will be updated through 2019, land classification zones will be restructured, hydrology calibration will be updated as needed, and final reporting including technical memo and model package.
This project with the Cannon River Watershed Joint Powers Board will conduct lake and stream sampling for the watershed restoration and protection strategy (WRAPS) update in the Cannon River Watershed. This sampling will track changes from the 2011 results, along with fill in gaps, delist or keep an eye out for new impairments, and gather data for permitting. The sites of sampling were selected by the Minnesota Pollution Control Agency (MPCA) and will be looking at lake and stream chemistry and stream bacteria.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
This monitoring effort will focus on collecting chemistry and field data information from six sample locations on Hay Creek, Wells Creek, Bullard Creek and Gilbert Creek in Goodhue County and Miller Creek in Wabasha County within the Mississippi River-Lake Pepin Watershed (MRLP). These streams are typically cold water streams which outlet directly to the Mississippi River or Lake Pepin. This monitoring effort is to assist with the 10-year watershed-monitoring schedule that the Minnesota Pollution Control Agency has placed on major watersheds across the State.
The purpose of this project is to continue supporting the Minnesota Pollution Control Agency in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Load (TMDL) study, which was prepared by LimnoTech under previous work orders.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
The goal of this project is to prepare a draft Lake Pepin Total Maximum Daily Load (TMDL) Report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae.
The goal of this project is to finalize the draft Lake Pepin Total Maximum Daily Load (TMDL) Report, issue it for public comment, address comments, and finalize the report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae. High levels of sediment, carried in by major river systems, also affect the lake. The sediment is filling in the lake at a much faster rate than before Minnesota was settled and intensely farmed. Nutrients and sediment are distinct yet inter-related pollutants, and are being addressed in separate TMDL reports.
The Bay City Lake Pepin restoration project broke ground in May of 2023. Lake Pepin Legacy Alliance (LPLA), in partnership with the U.S. Army Corps of Engineers (USACE) and several other local partners, has raised over $1 million to support the 35% local cost share portion of the project. What is often missing from USACE projects is outreach and community engagement, this is another gap LPLA hopes to fill. Three boat tours are planned in August, with a naturalist on board to provide a view and information on Lake Pepin successes and concerns, and the restoration project.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
This project will investigate the effects of different farming practices on soil health and nitrogen loss in a minimally tilled, corn-soybean farming rotation in Southeast Minnesota. The project area is a roughly 20 acre, pattern tiled field that will be split into two fields of nearly equal sizes. This will be a paired comparison of a control field and a treatment field where cover crops will be employed. Nitrogen loss will be monitored via two tile control structures and routine collection and analysis of tile water.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The goal of this project is to produce a subwatershed assessment report for two subwatersheds in the Lake Pepin major watershed. The subwatersheds included are East Lake and the upper North Creek that drains from Lakeville, both will be studied for total phosphorus and total suspended solids. The report will include two distinct lists of potential best management practice (BMP) location, cost, feasibility, estimated reductions and 30% specifications of top projects.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
This project will assess lakes and streams in the Cannon River watershed that have not been assessed to determine if they are meeting their designated uses. Some of these lakes and streams have data for certain pollutants, but not enough to complete an impairment assessment. The river and stream reaches are located in Dakota, Goodhue, Le Sueur, Rice, Steele, and Waseca counties. The lakes are located throughout the Cannon watershed (Le Sueur, Rice and Waseca Counties). This project will be a continuation of past assessments conducted in 2007 and 2009.
This project will focus on stream sample collection in 2 different watersheds in Goodhue County. Sample locations on streams will utilize existing STORET station ID sites along the North Branch of the Middle Fork of the Zumbro River and Hay Creek. The Middle Fork flows from the Kenyon area east to the City of Pine Island and drains roughly 40,000 acres. Hay Creek is a ~17,000 acre watershed that drains agricultural land and rolling hills between the town of Goodhue and Red Wing.
The Zumbro River Watershed is a major watershed in the Lower Mississippi River basin in SE Minnesota. It includes parts of six counties, covering 910,291 acres. This project will assess all 13 stream reaches in the Zumbro River Watershed to determine if they are meeting their designated uses. The monitoring will entail collecting water chemistry and field parameters.
Rice County Water Resources Division will complete a Surface Water Assessment for six lakes located in the Cannon River Watershed. The lakes chosen include: Sprague Lake (66-0045-00), Mud Lake (66-0054-00), Hatch Lake (66-0063-00), Pooles Lake (66-0046-00), Logue Lake (66-0057-00), and Phelps Lake (66-0062-00). Each lake chosen is currently unassessed, and both Sprague and Mud lake are priority lakes for testing. Sampling will include testing dissolved oxygen, temperature, pH, Secchi, Total phosphorus, and chlorophyll-a. The samples will be taken by volunteers and paid staff.