This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
The grant will use local data to develop stormwater planning options that prioritize, target, and measure the effectiveness of Best Management Practices and allow local city officials to make decisions on stormwater Best management Practices that reduce pollutants in the stormwatershed.
This project will work to address the nutrient impairment of Two Rivers Lake through the installation of targeted best management practices as prioritized in the Two Rivers Lake Targeted Conservation Practice Plan (funded through a 2014 SEDLCP CWF Grant). The goal of this project is to implement erosion control practices within three agricultural priority subwatersheds with existing erosion concerns and also to install urban water quality practices in two of the identified sub watersheds within the City of Albany.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Little Rock Lake experiences severe algae blooms due to excess phosphorus and these blooms are the worst known regionally. The goal of this project is to reduce algae blooms, improve water clarity, and avoid risk of drinking water contamination. The project will result in installing one farmer nutrient management project , four cover crops, two lakeshore buffer strips, six septic systems that also demonstrated an imminent threat to public health, six erosion control projects , one wetland restored, and one feedlot runoff control system.
This project will address nutrient impairments of the Sauk River and Sauk River Chain of Lakes (SRCL) by minimizing runoff from 5 high priority feedlots. Specifically, contaminated runoff from 5 feedlots upstream of the SRCL will be eliminated. The sites were prioritized based on the Minnesota Feedlot Annualized Runoff Model index ratings and the location of these feedlots are within a Drinking Water Supply Management Areas.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.