This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
The Rock County Soil and Water Conservation District/Land Management will build upon terrain analysis products developed by a Rock River Watershed 2013 BWSR grant and extend the data products to include additional water quality, Best Management Practices (BMP) suitability, BMP effectiveness, and BMP value datasets. This project will also extend this analysis to the remainder of Rock County, specifically Mud Creek, Beaver Creek and Split Rock Creek which are all listed for turbidity impairments.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
Civic engagement strategies including education public participation in watershed work and expanded knowledge, technical input into and review of stressor id process and report, Total Maximum Daily Load (TMDL) reports, implementation plans and protecion strategies.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Lac qui Parle-Yellow Bank Watershed District will collect water chemistry samples from the three lakes and twenty-nine stream sites in the Lac qui Parle and Minnesota Headwaters watersheds following the MPCA’s Intensive Watershed Monitoring (IWM) plan for lakes and streams. Eleven samples will be collected at each lake from May through September during 2015 and 2016. Eleven samples will be collected at each of the twenty-nine stream sites in 2015. In addition, sixteen samples at each stream site will be collected in 2015 and 2016 following the E.
The Lake Superior Beach Monitoring and Notification Program exists to test recreational beach water and notify the public if bacteria levels become unsafe. This project will expand the Beach Program to include additional outreach efforts, sanitary surveys and testing of new technologies to improve the Beach Program. Monitoring results will be used to inform the public, find the sources of bacterial contamination and address polluted runoff from improper waste disposal.
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
When completed, this Lake County-wide culvert inventory project will have multiple direct benefits to water quality protection, natural resource planning, and municipal asset protection. This inventory will be used to provide local and state authorities accurate information on the condition of road crossings, better calibrate hydrological modeling tools crucial to the inter-agency Watershed Restoration and Protection Strategies (WRAPS) process, and assess how road crossings in Lake County are affecting the water and sediment transport capacity of our waterways.
The main purpose of this project is to provide fiscal resources for Lake County Soil and Water Conservation District (Lake County SWCD) to be engaged and participate in efforts for civic engagement in the Lake Superior South (LS South) Lake Superior North (LS North) watersheds and lead and carry-out civic engagement in the early stages of the Watershed Restoration and Protection Strategies (WRAPS) process in the Cloquet River watershed.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project will dentify critical pathways and areas on the landscape that contribute a disproportionate amount of sediment stressors to selected streams located in LS South and/or LS North HUC 8 watersheds. Unlike other HUC 8 watersheds with one mainstem stream and nested tributaries to the mainstem, LS South and North consist of numerous individual streams flowing to Lake Superior. Each of these streams has a mainstem, tributaries flowing to the mainstem and a surrounding watershed.
The Cannon River Watershed includes approximately 941,000 acres of primarily agricultural landscape. Because of its large size, four subwatershed lobes are often referenced: Straight River Watershed, Upper Cannon River Watershed, Middle Cannon River Watershed, and the Lower Cannon River Watershed. Rice County is proposing utilizing LiDAR topographic data to determine areas of highest importance for Best Management Practice (BMP) Implementation for sediment within the Middle and Lower Cannon subwatersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
Within an 11-county area in southeastern Minnesota, two Nutrient Management Specialists will work directly with producers to reduce nitrogen, phosphorus, and fecal coliform runoff into surface and ground water in the region and the Mississippi River. The specialists will help producers create or revise nutrient management plans, implement Best Management Practices for manure and fertilizer use, and set up on-farm demonstration projects to support farmer-to-farmer learning.
The primary outcome of this project will be to work with five local landowners to implement BMPs that focus on protection of the Renville County portion of the Minnesota River- Mankato Watershed from elevated nutrient levels, in particular phosphorus. This project will utilize outreach and education to incorporate public involvement and input into targeted BMP implementation and the decision making process of watershed issues.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
Shattuck Saint Mary's, located atop of a bluff area upland of the east bank of the Straight River, encompasses a land area of 324 acres that contains over 16,426 miles of mild to extensively eroded ravines and gullies; many of which directly discharge to the Straight River. In addition to pollutant loads in runoff from the school's watershed and eroded ravines, banks and gullies, the Straight River also experiences pollutant loading from eroding stream banks in this reach; annual sediment loads average 1,962 tons per year.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.