The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
This project will establish a framework with County, Soil and Water Conservation District and watershed staff that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Cottonwood River and Redwood River watersheds.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This grant will allow Nicollet SWCD and partners the means to establish local and regional volunteer monitors for this and future monitoring activities in the Middle Minnesota River Watershed Basin. It also enhances past water quality studies by providing present data for water quality assessment in the Seven Mile Creek Watershed, which has and is receiving support by numerous entities to increase the water quality of that watershed.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The goal of this project is to collect real-time, parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity, and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks, ND on the Red River of the North. The data will be published on the USGS National Water Information System (NWIS) website.
In 2017 and 2018, Redwood-Cottonwood Rivers Control Area (RCRCA) will collect water chemistry samples from the 10 lakes and 24 stream sites identified in the Redwood and Cottonwood River watersheds. Six samples will be collected at 10 lakes from May through September in 2017; five samples will be collected at 5 lakes in 2018 from May through September. Eleven samples will be collected at each of the 24 stream sites following the Basic Regime in 2017. Sixteen samples at each stream site will be collected in 2017 and 2018 following the E.coli monitoring regime.
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.