This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will build upon existing planning and implementation efforts already taken on in the project area. The collection of existing information will be used to complement water information in support of a more successful and sustainable water quality improvement and protection implementation program. This will be achieved by active civic engagement activities throughout Phase I of this project.
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
This project will study the geologic controls on nitrate transport in southeast Minnesota's karst landscape and will also provide datasets for other projects over time.
This project will sample and monitor 18 sites for chemical, physical and bacteriological parameters for two years in coordination with the 2015-16 Surface Water Assessment Grant (SWAG) work plan proposal. Headwaters Science Center (HSC) will be the project lead and recruit volunteer students from Trek North, Bug-O-Nay-Ge-Shig, and Deer Lake high schools as well as to two AmeriCorps volunteer crews. An experienced Minnesota Pollution Control Agency (MPCA) environmental scientist will be the project lead responsible for oversight and full compliance to MPCA protocols.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The main outcome of Phase III of the project will be the final deliverable of a WRAPS report that will prescribe the restoration and protection strategies for the surface water resources within the Leech Lake River Watershed. The WRAPS will provide the analytical and strategic foundation which will be essential in protecting the surface water resources within this high quality watershed. Along with the development of the WRAPS report, this project will support the development and completion of the MPCA Stressor ID and Watershed Assessment reports to be completed for this watershed.
Several important milestones will be completed during this Phase (Phase II) of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
This project will support the sampling of six stream sites: two reaches of the Little Rock River, two Locations on the Kanaranzi Creek, one location on the East Branch of the Kanaranzi Creek as well as one location on the Ocheyedan River.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The goal of this project is to construct, calibrate and validate a watershed model using Hydologic Simulation Program FORTRAN (HSPF) for the Roseau River Watershed.
This monitoring project will complete assessments of 41 lakes found throughout Beltrami COunty and acquire sufficient data for state/local assessments and also assist with county water planning.
This project will collect water quality data at eight stream sites in three of the MPCA targeted watersheds. The sites are located on Medary Creek, Flandreau Creek, Pipestone Creek (2), Split Rock Creek, Rock River, Poplar Creek and Chanarambie Creek. This project will also promote a citizens monitoring program and encourage individuals to participate in a monitoring program.
This comprehensive water sampling program will assess the water quality of six sites: two main points on the Rock River, two main tributaries to the Rock River, and two points where streams leave the state (Mud and Beaver Creek) for a period of two years.
This project will collect water quality data at sites within the Thief River watershed. Nine monitoring sites were chosen at strategic locations along the Thief River and its significant tributaries.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
Locating the sources of sediment, phosphorus, and bacteria is integral to reducing the effect they have on a water body. The completion of the West Fork Des Moines River (WFDMR) Targeting and Prioritizing Endeavor will result in a set of data that is the most cost-effective for the implementation of Best Management Practices (BMPs) for all identified priority resources. The results will be expressed as the maximum reduction of a water quality contaminant (e.g. sediment, phosphorus, bacteria) at a priority resource (e.g. an impaired stream) for a given level of investment.
This monitoring work expands on previously established routine water quality and flow sampling to include extensive fish and aquatic invertebrate surveys. Subsequent steps include assessment of the monitoring data to determine impairments, identification of stressors that are causing impairments, development of Total Maximum Daily Load (TMDL) studies using identification of pollutant sources using computer modeling and other techniques, civic engagement, and public education as approaches in progress towards water quality goals.