The goal of this project is to achieve a 10% reduction in overall sediment discharge to the Mississippi River from the Northeast St. Cloud Drainage Area by installing one regional underground stormwater detention and treatment facility in partnership with a Neighborhood Redevelopment Project. The project will have over 16,000 cubic feet of water storage capacity treating 35 acres of stormwater runoff and is modeled to reduce sediment by 4.5 tons, which is 10% of the sediment reduction goal for this drainage area.
This project is targeting unsealed wells in parts of the county that are highly vulnerable to drinking water contamination and are already at a high risk to
contamination from other sources.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
This project will result in the final the Bois de Sioux River Watershed Restoration and Protection Strategies (WRAPS) report and Total Maximum Daily Load (TMDL) study. This work order will authorize the consultant to address all comments received during the public notice period and produce the final WRAPS report for the Minnesota Pollution Control Agency's final approval and a final TMDL study for United States Environmental Protection Agency's (EPA) final approval.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
This Surface Water Assessment Grant (SWAG) project is intended to supplement the 2019-2020 Intensive Watershed Monitoring (IWM) process for the Buffalo and Upper Red River of the North watersheds. Nine sites will provide water chemistry and river eutrophication data to the IWM. Monitoring sites were requested by the Buffalo - Red River Watershed District (BRRWD) and the Minnesota Pollution Control Agency (MPCA).
The Cottonwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.
This project will develop a watershed wide Total Maximum Daily Load (TMDL) study and River Eutrophication Standard (RES) TMDL report for water quality impairments in the Des Moines River basin, which includes the Des Moines River Headwaters, Lower Des Moines River, and East Fork Des Moines River watersheds.
This project will provide cost-share funds to landowners in vulnerable groundwater areas for the incorporation of cover crops in their crop rotation and to provide education related to nitrogen BMPs through field trials and Nutrient Management Plans. An anticipated 100 producers in highly vulnerable areas, will plant 3,000 acres of cover crops resulting in preventing potentially 19,800 pounds of nitrate from leaching into groundwater.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Otter Tail County will partner with the Buffalo-Red River Watershed District and the West Otter Tail and Wilkin SWCDs to stabilize the outlet of Judicial Ditch No. 2 which has become the most critically eroding gully contributing sediment to the Otter Tail River. When stabilized, sediment to the river will be reduced by 988 tons per year, and total phosphorus will be reduced by 840 pounds per year. The sediment reduction associated with this project is 7 percent of the 6,868 tons per year goal set by the Lower Otter Tail River Total Maximum Daily Load.
The goal of this project is to reduce peak stormwater flow discharge, sediment and phosphorus from directly entering Lake Pepin by installing two stormwater infiltration basins treating a total of 15.8 acres of developed residential and commercial area in Lake City in conjunction with the Highway 61 road reconstruction project scheduled for 2020 reducing total phosphorus by 13 pounds per year and sediment by 2 tons per year.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
The goals of project are to: 1) engage stakeholders and the public in watershed management activities; 2) conduct microbial source tracking to determine the source(s) of E.
Wood Environment & Infrastructure Solutions, Inc. (Wood) was selected for this project to conduct work in support of the per- and polyfluoroalkyl substances (PFAS) program. This project is a multi-phased pilot study to further validate and refine potential locations across Minnesota that may have historically been, or are currently, contaminated with PFAS. The primary objective is to evaluate potential PFAS locations, specifically compost sites, to determine presence or absence of PFAS at each site.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
The goal of this project is to development a Total Maximum Daily Load (TMDL) study that addresses all of the non-mercury-related impaired reaches along the Red River of the North (RRN). The TMDL study will provide an analytical and strategic foundation for recommending restoration strategies for impaired waters. This phase of the project will also include civic engagement efforts by providing water quality framework and stakeholder activities for civic/citizen engagement and communication.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health with the assistance of the Board of Water and Soil Resources protects both public health and groundwater by assuring the proper sealing of unused wells.” Clean Water funds are being provided to home owners as a 50% cost-share assistance for sealing unused private drinking water wells.
This project will conduct the second round of Intensive Watershed Monitoring (IWM) for the Mississippi River St. Cloud watershed. Partnering organizations intend to complete sampling of lakes and streams following the protocols and guidance set forth by the Minnesota Pollution Control Agency (MPCA). Watershed partners include Benton Soil and Water Conservation District (SWCD), Clearwater Watershed District, Sherburne SWCD, Stearns SWCD, Stearns County staff, and Wright SWCD.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
This project is the second phase of updating the Two Rivers watershed Hydrologic Simulation Program FORTRAN (HSPF) model. This project includes calibration of the model and including a proposed impoundment in the model. An analysis of possible downstream water quality impacts will also be done.
The primary objective of this project is to extend the simulation period of the Two Rivers Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2017 to support future simulation and assessment of the planned Klondike impoundment.
This proposal will fund technical assistance for nutrient management planning to accelerate water quality improvements with the 12-county West Central Technical Service Area (WCTSA). A needs assessment identified an estimated 156 certified nutrient management plans that will be needed over a 3 year period. Of the 71 SWCD employees in the WCTSA, only 1 SWCD staff member is dedicated to nutrient management planning. To meet technical assistance needs, this grant will fund a Regional Planning Specialist (RPS) to address local resource concerns.