The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
The overall goal of this project is to perform water quality monitoring duties to accomplish MPCA’s SWAG monitoring efforts at the four sites listed in Section IV of this application for the Middle Minnesota River stream sites selected in Renville, Redwood and Brown counties and allow for the assessment of aquatic life and aquatic recreation use for those reaches of the minor streams.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
The Cannon River Watershed is a diverse watershed from the standpoint of topography, land use, and land cover, but a central issue of concern is increased sedimentation and turbidity within the river. One of the best ways to keep sediment from entering the Cannon River is to install vegetative buffers on the smaller tributaries in the upper reaches of the watershed. This project is important as it aims to help identify strategic locations where buffers are needed and to assist landowners to install buffers that will directly help reduce sedimentation within the watershed.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
This project will assess the ability of using cover crops as a best management practice to reduce nitrate leaching loss from corn and soybean acres. This contract provides funding for the coordination, outreach and field work to support implementation of the Cannon River Watershed Restoration and Protection Strategy (WRAPS) nitrogen strategy (cover crop application) in Rice Creek. Funding for the actual best management practice (BMP)cost-sharing has been secured via other sources.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
The Chippewa River Watershed Project (CRWP) will work with the Minnesot Pollution Control Agency (MPCA) to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed to aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. Our goal is to collect quality data and complete load calculations for five sites using the MPCA's Watershed Pollutant Load Monitoring Network (WPLMN) established protocols.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
This project will allow for outreach programs to engage interested citizens in protecting 200 acres of riparian buffer in the headwaters of the watershed, accounting for 1860 tons of sediment prevented from reaching surface waters each year the practices remain in place. The desired outcome would include 30 or more participants in the program, and to develop a more extensive volunteer base.
This project will provide cost-share funds to landowners in vulnerable groundwater areas for the incorporation of cover crops in their crop rotation and to provide education related to nitrogen BMPs through field trials and Nutrient Management Plans. An anticipated 100 producers in highly vulnerable areas, will plant 3,000 acres of cover crops resulting in preventing potentially 19,800 pounds of nitrate from leaching into groundwater.
The purpose of this project is to increase awareness of environmental stewardship practices by providing up to five subgrants to local partners to engage the public, provide education on conservation practices, and create projects, including rain gardens, vegetative buffers, and wetland restorations. Each subgrant will reduce the movement of sediment, nutrients, and pollutants to multiple water resources, retain water on the land, and increase environmental knowledge to individuals within Rice County.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms. This project continues a 2012 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
This project will develop the Pomme de Terre Watershed Total Maximum Daily Load (TMDL) study for the second round of the 10-year watershed approach cycle in the Pomme de Terre watershed. This phase of the project will address 4 stream impairments and 3 lake impairments and produce a draft TMDL document. A second phase may be needed as the stressor ID report identifies more stream reaches with TMDL relevant stressors.
The goal is to facilitate strategic networking, learning, and participation of targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to become aware of water quality issues and increase best management practice adoption to restore and protect water quality in the Pomme de Terre River watershed. This goal will benefit the completion of the second cycle of the watershed approach by providing useful information important in the completion of Watershed Restoration and Protection Strategies (WRAPS) report.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government. In 1982 the Pomme de Terre River Association Joint Powers Board (JPB) was formed to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity. The goal of the JPB is to improve the local water resources within the watershed through voluntary efforts and building relationships with local landowners.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.