The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
The overall goal of this project is to perform water quality monitoring duties to accomplish MPCA’s SWAG monitoring efforts at the four sites listed in Section IV of this application for the Middle Minnesota River stream sites selected in Renville, Redwood and Brown counties and allow for the assessment of aquatic life and aquatic recreation use for those reaches of the minor streams.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
The Cannon River Watershed is a diverse watershed from the standpoint of topography, land use, and land cover, but a central issue of concern is increased sedimentation and turbidity within the river. One of the best ways to keep sediment from entering the Cannon River is to install vegetative buffers on the smaller tributaries in the upper reaches of the watershed. This project is important as it aims to help identify strategic locations where buffers are needed and to assist landowners to install buffers that will directly help reduce sedimentation within the watershed.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
This project will allow for outreach programs to engage interested citizens in protecting 200 acres of riparian buffer in the headwaters of the watershed, accounting for 1860 tons of sediment prevented from reaching surface waters each year the practices remain in place. The desired outcome would include 30 or more participants in the program, and to develop a more extensive volunteer base.
The purpose of this project is to increase awareness of environmental stewardship practices by providing up to five subgrants to local partners to engage the public, provide education on conservation practices, and create projects, including rain gardens, vegetative buffers, and wetland restorations. Each subgrant will reduce the movement of sediment, nutrients, and pollutants to multiple water resources, retain water on the land, and increase environmental knowledge to individuals within Rice County.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms. This project continues a 2012 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
The Pomme de Terre River watershed is located in west central Minnesota and occupies a portion of six counties. For many years surface water quality within the watershed has been a concern to local government. In 1982 the Pomme de Terre River Association Joint Powers Board (JPB) was formed to begin addressing this issue. In 2002 the Pomme de Terre River was placed on the Impaired Waters list for turbidity. The goal of the JPB is to improve the local water resources within the watershed through voluntary efforts and building relationships with local landowners.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
The Rock River Watershed encompasses runoff from the four counties of Rock, Pipestone, Murray and Nobles. The Rock River Watershed, along with the adjacent Elm Creek are listed as impaired by turbidity and fecal coliform. With limited funds available for restoration projects, targeting tools to pinpoint locations where projects stand to have the highest effectiveness are increasingly important.
This project is a partnership with farmers, livestock, commodity and conservation organizations and agencies to install, demonstrate and expand water drainage conservation within the Rock River Watershed. Up to four sites will be chosen based upon local selection criteria, installed and demonstrated to the public in 2013 and 2014.
Numerous studies have shown that stream bank erosion can be a significant contributor to the decline of water quality in the Rock River. The Clean Water dollars provided for this project assisted in three stream bank projects that address the turbidity (muddiness) impairment of the Rock River and bring the river closer to the level of water quality required for the EPA Clean Water Act.The $25,000.00 of Clean Water dollars were successful in leveraging $30,000 of US Fish and Wildlife funding as well as $20,000 of landowner and SWCD investment.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of the project is to sustain the existing Volunteer Nitrate Monitoring Network (VNMN) domestic well network for long-term groundwater quality studies by generating ambient groundwater quality data in domestic drinking water wells completed in various southeastern Minnesota aquifers, contrasting vulnerable and non-vulnerable hydrogeologic settings.
Imminent Health Threat (IHT) systems are those that are discharging improperly treated human waste onto the ground surface or into surface waters. In addition to the potential water quality impacts, untreated sewage has the potential to introduce bacteria and viruses into the environment. When IHT systems are identified, county or city staff assist the homeowners through the process required to bring their systems into compliance with the septic ordinance.
Successful long-term treatment of sewage depends on a system capable of providing adequate treatment and effective on-going operation and maintenance. Clean Water Fund Subsurface Sewage Treatment System (SSTS) Program Enhancement funds are used by counties to strengthen programs dedicated to SSTS ordinance management and enforcement. These funds are used for a variety of tasks required to successfully implement a local SSTS program including inventories, enforcement, and databases to insure SSTS maintenance reporting programs.
This project will establish up to 12 miles of riparian buffers along the Pomme de Terre River and its tributaries and install up to 5 raingarden within the cities of Morris and Chokio as identified in the Pomme de Terre TMDL Implementation Plan.
Grants to counties to implement SSTS programs including inventories, enforcement, development of databases, and systems to insure SSTS maintenance and of reporting program results to BWSR and MPCA and base grants.
This project will assess lakes and streams in the Cannon River watershed that have not been assessed to determine if they are meeting their designated uses. Some of these lakes and streams have data for certain pollutants, but not enough to complete an impairment assessment. The river and stream reaches are located in Dakota, Goodhue, Le Sueur, Rice, Steele, and Waseca counties. The lakes are located throughout the Cannon watershed (Le Sueur, Rice and Waseca Counties). This project will be a continuation of past assessments conducted in 2007 and 2009.
The Nobles Soil and Water Conservation District (SWCD) will test waters needing data for impairment listing in the Rock River and Little Sioux watersheds. Two reaches of the Little Rock River and the Ocheyedan River need stream water assessments. Iowa Lake needs sampling completed for impairment identification. The project will obtain adequate stream and lake data to either list the tested stream reaches and lake on the 303(d) list as impaired, or provide evidence that the stream reaches and lake is not impaired.
This project is a comprehensive two year water sampling program that will effectively assess the water quality of three main tributaries that contribute to the Rock River. These tributaries are the Champepadan Creek, Mound Creek and an unnamed Creek. The sampling frequency will be two times per month in the year 2010 and three times per month in the year 2011. Sampling will begin in April, when the channels are mostly free of ice and continue until October each year.
Rice County Water Resources Division will complete a Surface Water Assessment for six lakes located in the Cannon River Watershed. The lakes chosen include: Sprague Lake (66-0045-00), Mud Lake (66-0054-00), Hatch Lake (66-0063-00), Pooles Lake (66-0046-00), Logue Lake (66-0057-00), and Phelps Lake (66-0062-00). Each lake chosen is currently unassessed, and both Sprague and Mud lake are priority lakes for testing. Sampling will include testing dissolved oxygen, temperature, pH, Secchi, Total phosphorus, and chlorophyll-a. The samples will be taken by volunteers and paid staff.
The goal of this project is to reduce the number of vulnerable unused wells located within sensitive areas and to prevent potential groundwater contamination. This project will provide cost-share well sealing funds to target sealing of unused wells located in highly vulnerable areas within both the City of Faribault, and the City of Northfield's Drinking Water Supply Management Areas (DWSMA), and other vulnerable areas of Rice County.