The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
The overall goal of this project is to perform water quality monitoring duties to accomplish MPCA’s SWAG monitoring efforts at the four sites listed in Section IV of this application for the Middle Minnesota River stream sites selected in Renville, Redwood and Brown counties and allow for the assessment of aquatic life and aquatic recreation use for those reaches of the minor streams.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
The Mallery Jerseys dairy farm is critically located along the bluff of the St. Croix River escarpment and drains directly to the St. Croix River. In 2018, a Comprehensive Nutrient Management Plan was completed and identified a number of additional practices that should be implemented to improve the water quality of the St. Croix River. The proposed practices will reduce the phosphorus and nitrogen by 76 pounds (83%)and 265 pounds (85%) respectively.
A large, actively eroding gully has existed on the campus of Parmly, a senior living complex in Chisago City, for at least 50 years. The gully is on the banks of Green Lake, which is at high risk for becoming impaired in the near future. The Parmly gully project is identified as a source of untreated stormwater and phosphorus loading in the Chisago City urban subwatershed retrofit analysis report. Stabilization of the gully will provide a 20% reduction in phosphorus loading to Green Lake. The staff of Parmly is in full support of the project and a design is complete.
The St. Croix River escarpment has been a focal point for the Chisago Soil and Water Conservation District over the past 8 years, and continues to be one of the leading areas of Chisago County in terms of phosphorus reduction projects to Lake St. Croix. Of the original inventory, 16 of the 36 gullies have been stabilized. This application includes the stabilization of 5 gullies. These projects will reduce the phosphorus loading to the St. Croix River by at least 50 pounds per year and sediment loading by at least 50 tons per year.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The Chisago Lakes Chain of Lakes watershed in southern Chisago County is made up of 18 lakes and outlets to the St. Croix River through the Sunrise River. The top 20 urban and rural projects around North and South Center Lakes that are identified in the Rural Subwatershed Assessment and Urban Stormwater Retrofit Analysis reports will be the top priority of this application. The goal is a phosphorus reduction of 100 pounds (4%) to North and South Center Lakes.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
This project will be a complete TMDL report for the Biota and Bacteria (E. coli) impairments for the Ann River Watershed. The water bodies associated with these impairments will then be removed from the MPCA’s impaired waters list, and implementation activities to restore the water bodies will begin.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project proposes the implementation of 10 best management practices identified as having the lowest cost-benefit ratio as it relates to phosphorus reduction to downstream Moody and Bone Lakes with an estimated reduction to watershed phosphorus loads to Bone Lake by 90 pounds per year and to Moody Lake by 24 pounds per year. The Bone Lake watershed is at the ?top? of the larger watershed, making it an ideal location to begin work that will have direct improvements downstream.
The Cannon River Watershed is a diverse watershed from the standpoint of topography, land use, and land cover, but a central issue of concern is increased sedimentation and turbidity within the river. One of the best ways to keep sediment from entering the Cannon River is to install vegetative buffers on the smaller tributaries in the upper reaches of the watershed. This project is important as it aims to help identify strategic locations where buffers are needed and to assist landowners to install buffers that will directly help reduce sedimentation within the watershed.
Funds are to be used to protect, enhance and restore water quality in lakes, rivers and streams and to protect groundwater and drinking water. Activities include structural and vegetative practices to reduce runoff and retain water on the land, feedlot water quality projects, SSTS abatement grants for low income individuals, and stream bank, stream channel and shoreline protection projects. For the fiscal year 2012, BWSR awarded 12 local governments with funds.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
This project will assess the ability of using cover crops as a best management practice to reduce nitrate leaching loss from corn and soybean acres. This contract provides funding for the coordination, outreach and field work to support implementation of the Cannon River Watershed Restoration and Protection Strategy (WRAPS) nitrogen strategy (cover crop application) in Rice Creek. Funding for the actual best management practice (BMP)cost-sharing has been secured via other sources.
Continued TMDL project to support next phases associated with completion of TMDL's for ten lakes in the Carnelian Marine Saint Croix Watershed District (CMSCWD). Ten lakes are; East Boot, Fish, Goose, Hay, Jellum’s, Long, Loon, Louise, Mud and South Twin.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
The Chippewa River Watershed Project (CRWP) will work with the Minnesot Pollution Control Agency (MPCA) to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed to aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. Our goal is to collect quality data and complete load calculations for five sites using the MPCA's Watershed Pollutant Load Monitoring Network (WPLMN) established protocols.
This project is for Cycle 2 of the Intensive Watershed Monitoring (IWM) process for the Lower St. Croix Watershed. Seven stream sites will be monitored by the Isanti Soil and Water Conservation District (SWCD), Anoka Conservation District, and Chisago SWCD. Sampling will be conducted in 2019 and 2020 and Chemistry and field observation data will be taken.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will complete a Watershed Restoration and Protection Plan for the Lower St. Croix River that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, and that are understood and adoptable by local units of government and other stakeholders.
This project will support the development of whole farm conservation plans for ten (10) agricultural producers within the Sunrise River Watershed. The conservation plans will be used by the farmer and the Chisago SWCD to develop an action plan to address the resource concerns identified as part of the AgEQA program. The overall goal of the program is to prioritize conservation practices that will improve the overall water quality of the Sunrise River.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will develop and organize a first- stage civic infrastructure pilot in Kanabec County, within the membership of the PICKM (Pine, Isanti, Chisago, Kanabec, and Mille-Lacs) Alliance, and with other organizations in the St. Croix Basin. The work will be grounded in the need for sustainable citizen engagement in water quality management. Civic leaders participating in this project will build their own skills for organizing people and working in partnership with Kanabec County SWCD staff and the St. Croix Basin Team to achieve water quality goals.
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
The Snake River Watershed Management Board (SRWMB), working in concert with other local governmental units in within the watershed, will assist the MPCA, the project consultant, and other members of the Snake River Watershed Total Maximum Daily Load (TMDL) technical team in the completion of tasks associated with this TMDL project. SRWMB, with assistance from members of the technical team (Kanabec Soil and Water Conservation District (SWCD), Pine SWCD, Aitkin SWCD, and Mille Lacs SWCD) will provide the services to complete this TMDL project.
TMDL project in the Chisago Lakes Lake Improvement District that will develop a watershed based plan and provide strategies for water quality and aquatic ecosystem management, restoration, and protection within Sunrise River Watershed. This project will also aid in understanding the Phosphorus loading to Lake St. Croix.
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.