This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
There are two main goals of this Cedar Basin HSPF project,
A. Overall development of the HSPF model in the Cedar Basin of Minnesota; and
B. Shell Rock River nutrient, DO , impairment modeling and TMDL completion.
The Sauk River Watershed District (SRWD) is the drainage authority for Stearns and Pope Counties. The SRWD manages 12 public drainage systems totaling over 90 miles. The majority of the public systems provide drainage for agricultural land uses and were constructed in the early 1900s.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Demand for Engineering services in Northeast Minnesota's nine-county Area III Technical Service Area is exceeding the capacity to deliver the needed services. There are increased requests from Soil and Water Conservation Districts for engineering needed to design and install Best Management Practices in part due to requests related to Clean Water Fund projects. These funds will be used to hire an engineer, which will increase engineering capacity and result in the completion of at least five additional projects per year.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project is to conduct water chemistry monitoring at two subwatershed sites and two major watershed sites based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used for calculating pollutant loads. This loading information, in turn, will be used at both the state and local level to guide policy and strategies for the restoration and protection of Minnesota’s waters.
This project will help to improve the water quality of Lake of the Woods by providing local staff with the resources necessary for implementing best management practices that will reduce erosion in drainage ditches. The Lake of the Woods Soil and Water Conservation District (SWCD) will assist the County in developing a process for inventory and inspection of ditches. Public drainage is critical to the local economy and proper drainage management is critical to water quality protection.
The purpose of this project is to gain an understanding of modern and historical nutrient and thermal dynamics in Lake of the Woods using modeling, monitoring, sediment core analysis, and whole basin techniques.
The goal of this project is to determine: 1) temperature and seasonal variations in sediment chemical-textural characteristics (upper 10-cm sediment layer) and rates of P release from sediments; and 2) vertical variations in mobile P concentrations in the sediment column of Big Traverse Bay in order to better understand the role of internal P loading to the P economy of LOW and for the development of the LOW TMDL.
The purpose of this work is to develop a Watershed Restoration and Protection Strategy (WRAPS) and associated Total Maximum Daily Load (TMDL) documents for the Lower Rainy River and Rainy River Rainy Lake Watersheds.
Mankato State University (MSU) will work with the Minnesota Pollution Control Agency (MPCA) and the Minnesota Department of Agriculture (MDA) to plan a stakeholder process kick off meeting for the Minnesota River Ag/Urban partnership project. MSU will help to plan and facilitate the meeting.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The goal of this project is to add dual endpoints to the turbidity section of the North Fork Crow TMDL so that it addresses the proposed TSS standards.
This project will work to install 30 water and sediment control basins (WaSCOBs) in three subwatersheds adjacent to Lake Minnewaska to reduce the amount of total phosphorus (TP) entering Pelican Lake, Lake Minnewaska, and Lake Emily. Pelican Lake and Lake Emily have been identified in an 8 lake Total Maximum Daily Load (TMDL) study conducted in Pope County as being impaired for excess nutrients.
This work order will extend all of the timeseries in the Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2019. The Sauk River Watershed HSPF model simulates hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and chlorophyll a.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The purpose of this project is to provide a new shared position in southeast Minnesota which will accelerate the adoption of soil health practices by leveraging the existing efforts of the National Resources Conservation Service and other organizations.