The Ralph Engelstad Arena in Thief River Falls is the premier high school hockey arena in the State of Minnesota. The Arena fills two city blocks and is covered by 85-90% impervious (hard) surface. Rainfall events completely inundate roads and sidewalks, overloading the stormsewer system. Larger events cause water to stand high enough to reach the front steps to the Arena. Roof runoff produces large amounts of water running from the downspouts. Runoff has made sod establishment on the grounds difficult. Washouts have developed carrying sediment to the stormsewer.
The goal of this project is the development of a model of wild rice population dynamics, using RAMAS software, which mimics natural variability of population levels and calculates the probability of population extinction.
Ramsey County has over 3,500 acres tied to faith based organizations and schools. On average, these properties contribute one billion gallons of stormwater runoff, 3,000 pounds of phosphorus, and 1,000 tons of sediment to local water bodies. The Ramsey Conservation District (RCD) in partnership with local property owners and watershed districts/water management organizations will install 6-12 stormwater projects that will help protect and improve water quality of surrounding lakes.
Ramsey County has 3,500+ acres tied to 358 faith organizations and 304 schools. On average, these properties contribute 1 billion gallons of stormwater runoff, 3,000 lbs of phosphorus, and 1,000 tons of sediment to our local water bodies. The Ramsey Conservation District (RCD), working with community partners and Watershed Districts/Water Management Organizations, will install 6-12 stormwater best management projects that will help protect and improve water quality of surrounding lakes.
The purpose of this program is to provide cost share funding to community groups for the installation of community accessible rain gardens and other water quality projects in Ramsey County. The Ramsey Conservation District (RCD) in partnership with local property owners and Watershed Districts/Water Management Organizations will install 6-12 stormwater best management projects that will help protect and improve water quality of surrounding lakes, streams, rivers, and wetlands.
Ramsey County, the most densely populated county in Minnesota, generates high levels of contaminated runoff from its impervious surfaces, which can have damaging effects on both surface water and groundwater. Concerns arise when these contaminants drain into abandoned and unused wells, threatening the quality of groundwater, especially in drinking water supply areas, wellhead protection areas, or groundwater recharge zones.
This project will provide the Minnesota Pollution Control Agency and Ramsey-Washington Metro Watershed District the information and tools necessary to improve water quality in Battle Creek Lake, Beaver Lake, Carver Lake, Keller Lake and Wakefield Lake through targeted phosphorus reduction activities in the watershed.
The goal of the project is to create a complete Watershed Restoration and Protection Strategy (WRAPS) report for the Ramsey-Washington Metro Watershed District for inclusion into an updated Watershed Management Plan, including completion of a watershed-wide Total Maximum Daily Load (TMDL) report sufficient for EPA approval.
The Rapid River Watershed Restoration and Protection Strategy (WRAPS) project will result in the development of the restoration and protection strategies for the watershed and engage the local stakeholders in the practices of watershed management. This project will also develop Total Maximum Daily Loads (TMDLs) for impaired waters.
This work order will fund the development and delivery of an approved final Total Maximum Daily Load Program (TMDL) study and Watershed Restoration and Protection Strategy (WRAPS) report for the Rapid River Watershed.
The Bluff Creek Watershed TMDL Implementation Plan evaluated the stream power index for each of the gullies identified in the 1996 Management Plan. Based upon this terrain analysis, sediment loading rates from the 1999 to 2008 P8 modeling results, and modeled surface runoff, known erosion sites were prioritized. This site, which is tributary to Bluff Creek and the Minnesota River, was given the highest priority ranking.
Lake Minnewaska, a highly used recreational lake, is the largest body of water in Pope County. While scientific studies show that the transparency in Lake Minnewaska has been increasing over the last 30 years, there are numerous ravines on the south shore of Lake Minnewaska that could threaten this trend. The erosion in these ravines is causing large amounts of sediment and phosphorus to be dumped directly into Lake Minnewaska. After a storm in 2011, many trees vegetating the ravines were blown down, ripping out the roots and further exposing the soil along these ravines.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
US Geological Survey (USGS) will perform real-time water quality monitoring at its stations located in Fargo and Grand Forks. The Minnesota Pollution Control Agency co-sponsors this work along with USGS, North Dakota Dept. of Health, the cities of Fargo, Moorhead, Grand Forks, and East Grand Forks.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The objectives of this project are to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North. Data will be published on the USGS Nation Water Information System (NWIS) website and in the USGS Annual Report.
Agency staff and local partners will gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
This is a multi-governmental project funded by the Minnesota Pollution Control Agency, the United States Geological Survey, North Dakota Department of Health, the Cities of Fargo, Moorhead, Grand Forks, and East Grand Forks to monitor river flow and condition parameters to gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
The Red Lake Watershed District will collect water chemistry samples, field measurements, and photos at water quality stations in the Thief River Watershed that have been prioritized for Intensive Watershed Monitoring. This sampling effort will allow for an unbiased assessment of stream conditions for aquatic life and aquatic recreation. Eleven stream monitoring stations have been selected for this monitoring effort. Sampling will be conducted during the years 2022 and 2023 so that data is available for assessment in 2024.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
This project is a partnership with Kittson County, the Joe River Watershed District and the Two Rivers Watershed District to install vegetative filters, buffers and erosion control practices along the Red River of the North and several major tributaries within the county.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
The Clay SWCD will partner with the Buffalo-Red River Watershed District (BRRWD) and landowners to stabilize gullies to the Red River. The first priority will be to address ongoing erosion in Snakey Creek. Snakey Creek is the outlet of County Ditch No. 41 which has become the most critically eroding gully contributing sediment to the Red River in our targeted reach. When stabilized, sediment load to the river will be reduced by 1404 tons per year, and Total Phosphorus will be reduced by 1615 pounds per year.
Impaired waters in the Red Lake River 1W1P are categorized into management classes to target impaired waters that are closest to meeting water quality standards and to protect unimpaired waters close to becoming impaired. Management areas targeted in 2018 and 2019 include the Little Black River, Black River, County Ditch 96, the Red Lake River between Thief River and Crookston, Burnham Creek, and Grand Marais Creek.
The goal of this project is to development a Total Maximum Daily Load (TMDL) study that addresses all of the non-mercury-related impaired reaches along the Red River of the North (RRN). The TMDL study will provide an analytical and strategic foundation for recommending restoration strategies for impaired waters. This phase of the project will also include civic engagement efforts by providing water quality framework and stakeholder activities for civic/citizen engagement and communication.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
The Clean Water Fund Project's primary purpose is to reduce soil loss, eliminate sediment deposition in the two Red Lake Watershed District(RLWD) ditch systems, improve water quality, and reduce maintenance costs along these ditch systems. The project will be a team effort between the Red Lake County SWCD, the Red Lake Watershed District, and the landowners located along the ditch systems.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.
The Clearwater River Watershed in northwestern Minnesota is a targeted watershed for the 2014-15 Surface Water Assessment Grant (SWAG) funding. A partnership of local agencies will monitor water quality at the targeted sites within this watershed that are listed in Appendix C of the 2014 Surface Water Assessment Grants (SWAG) Request for Proposal (RFP) document. Fifteen monitoring sites have been chosen within the Clearwater River watershed.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
The objective of this project is to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks North Dakota.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.