Governor Mark Dayton's landmark buffer initiative was signed into law in 2015. The law establishes new perennial vegetation buffers of up to 50 feet along rivers, streams, and ditches that will help filter out phosphorus, nitrogen, and sediment. The new law provides flexibility and financial support for landowners to install and maintain buffers. The DNR's role in Minnesota's new buffer law is to produce a statewide map of public waters and public ditches that require permanent vegetation buffers. The DNR is scheduled to produce these maps by July 2016.
Once thought to have an essentially inexhaustible groundwater supply, Minnesotans are now realizing our rates of use are regionally unsustainable. Recent advanced modeling by the MN DNR and Metropolitan Council of aquifer supplies, in conjunction with predicted demand, indicate the major metropolitan area aquifers are currently subject to extraction rates that exceed recharge. Simply stated, we are mining our groundwater.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
Carlton County Soil and Water Conservation District (SWCD) and local volunteers will lead an effort to collect total phosphorus, chlorophyll-A, hardness, chloride and secchi disc transparency data for the Minnesota Pollution Control Agency (MPCA) Surface Water Assessment Grant project on the following 10 lakes: Twentynine, Bob, Bear, Little Hanging Horn, Hanging Horn, Moose, Echo, Coffee, Kettle and Merwin.
The Pennington SWCD has collaborated with Pennington County for several years to identify priority County Ditch reaches that are in need of buffers and grade stabilization structures. This cooperative effort has resulted in the reduction of nutrient and sediment delivery to the Red Lake River Watershed. Pennington SWCD has recently inventoried buffer and grade stabilization needs on three different County Ditch systems: 96, 21 and 16. A total of 23 miles of ditch has been inventoried, 15 miles of buffer are needed along with 81 grade stabilization structures.
The Cedar River Watershed District was established in 2007 to identify and fix the water quality impairments in the Cedar River. After several years of monitoring and modeling, the district has developed the requisite background data to drill down on the 25 most crucial areas for targeted treatment. In 2015, a Capitol Improvement Plan was developed to prioritize and rank the most critical projects within the priority list. The District is requesting Clean Water Funding to implement the highest ranking projects, which are shovel ready for timely construction.
The Chain of Lakes Targeted Reduction project will utilize Clean Water Funds to address bank erosion and install vegetated buffers along tributaries to the Eden Valley Chain of Lakes using the SRWD's incentivized Hayed Buffer Program. The Eden Valley Chain of Lakes (Vails Lake, Eden Lake and North Browns Lake) drain into the main segment of the Sauk River Chain of Lakes (SRCL) from the south. Impaired for excessive nutrients, this southern series of lakes is influenced by inflows from private ditches and perennial and intermittent streams.
The Chippewa River Watershed Project (CRWP) will work with the Minnesot Pollution Control Agency (MPCA) to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed to aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. Our goal is to collect quality data and complete load calculations for five sites using the MPCA's Watershed Pollutant Load Monitoring Network (WPLMN) established protocols.
Sediment and water quality issues are local priorities within the Thief River and Red Lake River watersheds, which have their confluence in the city of Thief River Falls. The 1W1P effort underway in the Red Lake River Watershed will identify opportunities for projects and practices that are targeted and result in measurable water quality benefits throughout the watershed using PTMApp.
The goals of the program are to evaluate the effectiveness of agricultural conservation practices, identify underlying processes that affect water quality, and develop technologies to target critical areas of the landscape. Funded projects provide current and accurate scientific data on the environmental impacts of agricultural practices and help to develop or revise agricultural practices that reduce environmental impacts while maintaining farm profitability.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
Crow Wing County, in cooperation with the municipalities within the County, plans to continue its successful well sealing program that pays 50% of the cost to seal unused/abandoned wells up to a maximum of $1000 per well. The amount of funding requested is $31,000 which is estimated to allow for the sealing of 80-100 wells. From 2012 to 2015, Crow Wing County sealed 65 wells as part of an earlier MDH well sealing grant from the Clean Water Fund. Priority will be given to wells located in or near existing wellhead protection areas.
The Minnesota Pollution Control Agency (MPCA) offers grants to counties for Subsurface Sewage Treatment System (SSTS) program administration and special projects to improve SSTS compliance rates, and assistance for low-income homeowners with needed SSTS upgrades. The MPCA will determine grant allocations based on applications review; funds will flow to counties through the Board of Water and Soil Resources' Natural Resources Block Grants.
The DNR works with the Minnesota Geological Survey (MGS) to convey valuable geologic and groundwater information and interpretations to government units at all levels, but particularly to local governments, private organizations and citizens. The MGS focuses on geology (Part A reports) and DNR focuses on groundwater (Part B reports). These provide useful information for projects completed by community planners, industry, agriculture, citizens and state agencies related to groundwater.
The project goal is to conduct water chemistry monitoring at five subwatershed sites and two basin sites annually from 2016-2019, based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
The project will include lake monitoring on seventeen lakes found in the Mississippi River - Brainerd watershed in East Central Crow Wing County (CWC). The project will be conducted in an effort to gain data on these data-deficient lakes. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP). Surface water assessment monitoring will enable state 303(d) and 305(b) assessments and provide a better understanding of these lakes.
The Wright Soil and Water Conservation District (Wright SWCD) has partnered with the Crow River Organization of Waters (CROW), the Natural Resources Conservation Service (NRCS) and Wright County Planning and Zoning on this bacterial impairment reduction project to bring feedlot operations into compliance in the targeted North Fork Crow River (NFCR) impaired Unnamed Creek watershed. An analysis of the NFCR TMDL for Bacteria, Nutrients, and Turbidity was done to determine the area to be prioritized for further review of livestock operations in order to reduce the E.
The purpose of this project is to reduce phosphorus loading to Crystal Lake transported primarily through County Ditch 56. Crystal Lake is listed on MPCA's 303d listing for phosphorus impairment. Increased phosphorus levels have caused toxic algal blooms, reducing its appeal to recreationalists and economic draw for the City of Lake Crystal. This project will directly address phosphorus sources from agricultural land.
The Minnesota Pollution Control Agency (MPCA) has identified streamflow alteration as a key stressor on aquatic life, but the characteristics of streamflow alteration acting as stressors have not been identified in the MPCA Watershed Restoration and Protection Strategy (WRAPS) process. Without indices that characterize streamflow alteration, the MPCA cannot quantitatively associate metrics of aquatic life condition to streamflow alteration. The lack of quantifiable indices limits the ability of the MPCA to assess environmental streamflow needs for streams and rivers throughout Minnesota.
Carver County has identified water quality improvement of Carver, Bevens and Silver Creek as a water management priority. This project will identify storage or wetland restoration sites that are highly effective at reducing pollutant loading to downstream impaired waters using high-resolution Light Detection and Ranging (LiDAR) data and Geographic Information System (GIS) processes. The watershed landscape has been highly modified for agricultural production land development; less than 50 percent of pre-settlement wetland acres remain in Carver County.
Nitrogen is a serious problem in Minnesota's Mississippi River Basin and the Dodge Soil and Water Conservation District (SWCD) will address this problem through saturated buffers. Nitrates have been linked to adverse health effects, and nitrogen is the leading cause of the dead zone in the Gulf of Mexico. Agriculture drainage through the use of tile drainage systems have been identified as the number one leading source of nitrogen in the Mississippi River Basin.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
The goal of this project is to construct, calibrate, and validate one fine-scale Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Duluth Watershed Restoration and Protection Strategy (WRAPS) project area for the simulation period 1995–2012. In addition, an existing condition (post-2012 flood) model scenario will be developed for use in WRAPS development. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs.
The Ramsey-Washington Metro Watershed District (RWMWD) is responsible for the protection and restoration of the water quality of 20 lakes and 5 creeks within its boundary. Permit and voluntary cost share programs serve to slowly redevelop the watershed to the benefit of these water bodies. However, additional projects are needed- not only to implement green infrastructure in areas that need extra restoration and protection, but also to foster new relationships between citizens and the RWMWD to rally together in a common goal to the benefit of their water resources.
Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) requests assistance from local partners to collect samples and field data at designated stream monitoring sites for the purpose of assessing water quality and calculating annual pollutant loads.
After 6 years of intensive baseline monitoring at 5 edge-of-field sites, 1 intermittent and 3 in-stream sites in 3 sub-watersheds representing the geomorphic regions of the Root River, the second phase of the project is well prepared for the implementation of BMPs. Continued monitoring will be used to measure the effectiveness of the BMPs for the next 6 years. In preparation for BMP implementation, extensive planning was completed using LiDAR terrain analysis and the Tomer Framework to prioritize practices.
The Bell Museum will sort and identify all fish samples collected by the Minnesota Pollution Control Agency's (MPCA) North and South Biological Monitoring Units. The Bell Museum of Natural History (Bell Museum) will provide professional fish Identification expertise to the MPCA fish voucher program, while also helping the Bell Museum annually update their fish distribution map for the State of Minnesota. As the MPCA samples and vouchers species of significance, the Bell Museum shall catalog these species into their official fish collection.
The DNR works with the Minnesota Pollution Control Agency and the Minnesota Department of Health to determine the level of contamination from mercury and other harmful chemicals in fish from Minnesota's lakes and rivers and to track the success of efforts to reduce mercury pollution. Clean Water Legacy funding is being used to significantly increase (more than double) the number of lakes and rivers that are assessed for mercury contamination on an annual basis. Fish are collected during DNR fishery surveys, processed for laboratory testing, and analyzed for contaminants.
Forest Lake is one of the top recreational lakes in the metro area with a diverse and healthy fishery along with thee public accesses. The water quality of Forest Lake also impacts downstream waters, particularly Comfort Lake, the Sunrise River, and ultimately Lake St. Croix. A water quality study was completed for Forest Lake identifying nutrient reduction goals to meet state water quality standards for all three basins of Forest Lake along with the Comfort Lake-Forest Lake Watershed District's (CLFLWD) long term goal water quality goals for the lake.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Forever Green Initiative develops perennial and cover cropping systems specific to Minnesota that are necessary to protect and restore the state's surface and groundwater resources while increasing efficiency, profitability, and productivity of Minnesota farmers.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by providing staff support throughout fiscal years 2016 and 2017 to conduct water chemistry monitoring at two specified stream locations from ice out through October 31 capturing snow melt, rainfall events and base flow conditions.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to the Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project.
This project will conduct water quality monitoring at 12 stream sampling sites. The sites will be monitored for chemical, physical, and bacteriological parameters over a two year time-period. The Headwaters Science Center (HSC) will be the lead agency and arrange volunteer cooperation from Trek North, Bemidji, Perham and/or Detroit Lakes High School students and their instructors. The HSC project lead will be responsible for oversight and full compliance to MPCA protocols.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Itasca SWCD will work with the Minnesota Pollution Control Agency as a collaborative effort to monitor the Big Fork River near Bigfork at State Highway 6 and Big Fork River near Craigsville at State Highway 6. Itasca Soil and Water Conservation District (SWCD) staff will strive to capture the peak, rising, and falling limbs of the hydrograph for spring run-off and significant storm events as well as base flow samples. Itasca SWCD staff will utilize local rain gauge readers, storm tracking weather services, and historical stage data to aid in making monitoring judgments.