The Ashley Creek and Adley Creek Inventory Project will involve desk top analysis and a field scale inventory of riparian areas to determine priority areas to install erosion control Best Management Practices and vegetative buffers for nutrient reduction. Assessments will also be made for potential E.coli bacteria sources. Inventory data will be shared with local partners to further develop an implementation plan to address nutrient loading and the listed impairments on each creek.
The primary goal of this project is to analyze of dated sediment cores to reconstruct changes in the lake condition over the last 150 years. This will be done using multiple lines of evidence including biogeochemistry, sediment accumulation, and diatom and algal remains as biological indicators.
The goals of this project are to develop and implement a stakeholder and public engagement program, update the Hydrological Simulation Program FORTRAN (HSPF) models for the Big Fork and Little Fork River Watersheds, develop Total Maximum Daily Load (TMDL) studies for impaired waterbodies, remove naturally impaired streams from the impairment list, develop a Watershed Restoration and Protection Strategy (WRAPS) report, and to conduct civic engagement activates necessary to ensure project success.
The purpose of this project is to provide stream and large river macro invertebrate sample processing and identification for the Minnesota Pollution Control agency (MPCA) Biological Monitoring Unit.
The final product will consist of; data submitted electronically to the MPCA, project reference specification, return of all identified specimens, and an external and internal QA/QC report.
This project will conduct Inventory and Inspection of four drainage ditches in Blue Earth County: JD116, CD5, CD86 and CD56. The inventory of these drainage ditches is important in order to identify where erosion, sediment and/or nutrients contribute substantially to water quality degradation. The project will also prioritize sites for future side inlet control, buffer strip implementation, and/or storage and treatment implementation.
The Crow Wing Soil and Water Conservation District (SWCD) will partner with citizen groups and nonprofit groups to complete projects to reduce stormwater runoff and retain water on the land in Crow Wing County's (CWC) 125 minor watersheds. The SWCD will implement a mini grant program and provide competitive grant funds to an anticipated 12 groups. This project will also address CWC Water Plan priorities one, two, and six, which involve stormwater management and sediment control, shoreline buffers, and agriculture best management practices.
Currently, over 235 miles of open ditch are under the jurisdiction of the Brown County Ditch Authority. A majority of Brown County public ditches drain into large, impaired rivers including the Minnesota River (Turbidity), Cottonwood River (Turbidity/Fecal Coliform), Little Cottonwood River (Turbidity/Fecal Coliform) and Watonwan River (Turbidity/Fecal Coliform). Thus far the Brown County Drainage Authority has been inventorying ditches as requested for repair by residents in the ditch system.
The Watershed District is partnering with the City of Stillwater to reduce sediment and thermal loading to Brown's Creek from existing impervious gravel parking lot and paved roads to achieve Total Maximum Daily Load water quality goals in this reach of Brown's Creek.
Phase II of the Burnham Creek Watershed Restoration Project will conduct inventory on 2,050 acres, 85.4 miles of ditch channel within the Burnham Creek Watershed of West Polk County. This inventory includes surveying, assembling all available GIS data, ArcMap, LiDAR, review aerial photography, location of tile intakes, determine size of the erosion sites, and prioritization of severity. The district will partner with the Area DNR Hydrologist and the Polk County Highway Department-Drainage & Ag Inspector to verify data and identify any additional ditch segments.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The data collected in this workplan is the foundation for an accurate TMDL allocation and accurate implementation strategy design. Current and historic phosphorus inputs will be calculated and evaluated as to source. Nutrient and algal history and trends in sedimentation will be reconstructed to identify ecological changes that have occurred in the lakes both recently and historically.
Carlton County Soil and Water Conservation District (SWCD), Carlton County Planning and Zoning, and local volunteers will lead an effort to collect Total Phosphorus, Chlorophyll-A, and secchi disc transparency data for the MPCA Surface Water Assessment Grant (SWAG) project on following six lakes: Eagle Lake, Upper (North) Island Lake, Lower (South) Island Lake, Tamarack Lake, Cole Lake, and Cross Lake.
The Conservation Dashboard will provide the Carlton Soil and Water Conservation District, its water plan, and local landowners a system to target, prioritize, and measure resource needs and effective conservation implementation within the subwatersheds of Carlton County. The Dashboard will identify where data gaps exist, translate the data in a way that partners and landowners easily understand, and insert Best Management Practice recommendations onto the county webmapping tool, used by citizens.
This project will implement watershed load reduction practices to restore the top priority water body in the Carnelian Marine St. Croix Watershed District in northeast Washington County. Recently completed prioritization and targeting efforts have identified several Best Management Practice opportunities around goose Lake, the number one priority for implementation practices.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
This study will test groundwater and drain tile waters at concentrated animal feedlot opperations (CAFOs) to evaluate the presence of intibiotics and hormones. Samples will be collected from monitoring wells, tile drain sumps, and tile line discharges.
Water samples will be sent to Axys Analytical Services as they are colleced from each monitoring site. A total of 18 samples will be generated in the field by pumping ultrapure water through the sampling system.
With a population of approximately 3,500, the City of Mora is the largest municipality in the Snake River watershed. Monitoring indicates the city's Lake Mora has high levels of total phosphorus, total suspended solids, and other pollutants. This project will develop a plan that identifies several stormwater best management practices (BMPs) for the City of Mora and surrounding rural areas to address these impairments. Modeling and analysis will be used to target projects where they can provide the most benefit.
The goals of the program are to evaluate the effectiveness of agricultural conservation practices, identify underlying processes that affect water quality, and develop technologies to target critical areas of the landscape. Funded projects provide current and accurate scientific data on the environmental impacts of agricultural practices and help to develop or revise agricultural practices that reduce environmental impacts while maintaining farm profitability.
The goal of this project is to update existing bacteria and Total Suspended Solids (TSS) source inventory through desktop survey and field reconnaissance to identify and prioritize locations to reduce sediment and bacteria loading to the Clearwater River; then, design and implement best management practices (BMPs) at prioritized locations to reduce loading.
This project addresses the northeast St. Cloud drainage basin, the highest priority in the St. Cloud Stormwater Management Plan. St. Cloud has observed and documented ongoing sediment loading to the Mississippi River from the 367 acre watershed. The project is also a companion to the Green Roofs Blue Waters program in which several sediment reduction BMPs are being identified and installed along the Mississippi River.
The City of Cold Spring is looking to retrofit 24 acres of existing development within a 138 acre subcatchment of the City to improve the water quality of Cold Spring Creek, a designated trout stream. The large amounts of hard surfaces within the subcatchment area do not allow for rainfall or snow melt to soak into the ground. The stormwater carries with it sediment, bacteria, automotive fluids, and other pollutants. Cold Spring staff has frequently witnessed sediment plumes, the color of chocolate milk, at the storm sewer outfalls.
The goal of this project is to develop a core team of wastewater professionals and academics engaged in understanding and solving wastewater-related problems in Minnesota, with national relevance. The team will promote the use of new technology, designs and practices to address existing and emerging wastewater treatement challenges, including the treatement of wastewater for reuse and the emergence of new and unregulated contaminants.
This project will enable community partners to implement 5-10 shoreline erosion reduction best management projects that will reduce sediment and improve water quality of county lakes and streams. Preference will be given to properties within a watershed of a Total Maximum Daily Load study, properties on a sentinel lake, properties on lakes and streams with active associations, and projects ranking high in sediment reduction amount. Projects may include engineered erosion reduction Best Management Practices and/or plantings.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
Civic engagement strategies including education public participation in watershed work and expanded knowledge, technical input into and review of stressor id process and report, Total Maximum Daily Load (TMDL) reports, implementation plans and protecion strategies.
The County Well Index (CWI) contains well and boring records wells within Minnesota; over 400,000 records. It is the principal source of well construction information and geologic interpretations of well records and also contains soil boring records, mineral exploration test hole records, and scientific/research test hole records.
The Minnesota Pollution Control Agency (MPCA) offers grants to counties for Subsurface Sewage Treatment System (SSTS) program administration and special projects to improve SSTS compliance rates, and assistance for low-income homeowners with needed SSTS upgrades. The MPCA will determine grant allocations based on applications review; funds will flow to counties through the Board of Water and Soil Resources' Natural Resources Block Grants.
The DNR works with the Minnesota Geological Survey (MGS) to convey valuable geologic and groundwater information and interpretations to government units at all levels, but particularly to local governments, private organizations and citizens. The MGS focuses on geology (Part A reports) and DNR focuses on groundwater (Part B reports). These provide useful information for projects completed by community planners, industry, agriculture, citizens and state agencies related to groundwater.
This project will address impairments in the St. Croix, Kettle and Snake River Watersheds by reducing sediment and phosphorus delivery by encouraging private forest landowners within the St. Croix River Watershed in Pine County to re-establish riparian forest buffers, maintain existing riparian buffers and plant de-forested areas. It will develop a forest stewardship program and write forest stewardship plans in watersheds with the highest risk of impacts on water quality as listed by the Minnesota Forest Resources Council. This project will implement measures to achieve the St.
This project will improve water quality, reducing phosphorus annually by 1,842 in the St. Croix, Kettle and Snake River Watersheds in Pine County by establishing cover crops to reduce erosion and phosphorus/fertilizer applications, increase soil fertility, permeability, and microbe activity. A no-till drill will be purchased for use by agricultural producers for installing cover crops as a means of decreasing soil erosion, reducing phosphorus and fertilizer applications and increasing soil health.
The Wright Soil and Water Conservation District has partnered with the Crow River Organization of Waters (CROW) and the Natural Resources Conservation Service (NRCS) on phase two of this comprehensive sediment reduction project to focus on stabilizing five of the most active gully erosion sites in targeted subwatersheds on the North Fork Crow River, as well as use the installed best management practices to help promote future conservation practices.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
The Middle Fork Crow River Watershed District is home to many natural resource organizations, all of which have a vested interest in the quality of local and regional resources. The District will provide financial assistance in the format of sub-grants to local partners to implement Best Management Practices to improve water quality.
Diamond Lake and its neighboring lakes feature numerous public water accesses, resorts, parks, and trails and are supported by the recreational and aesthetic values that good water quality provides. In 2006, Diamond Lake was placed on MPCA's List of Impaired Waters. Improving water quality in Diamond Lake to meet state standards is a top-ranking priority for the district.
This feasibility study will produce strategies for wetland restoration and ditch hydrology changes to reduce the amount of phosphorus and solids that drain into Typo and Martin Lakes, the Sunrise River and St. Croix River. Total Maximum Daily Loads and other plans have identified this area as key for pollutant reduction, and the study will determine scope and effects of potential projects, allowing the district to prioritize those that will have the great impact on water quality.
This training will be for State employees who have purchased this new type of discharge measuring equipment. This training is needed to ensure that accurate and complete discharge measurements are made which is supplied to Minnesota Department of Natural Resources (DNR), Consulting firms, Local units of government, federal government and Minnesota Pollution Control Agency (MPCA) modelers.