This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
The Pope County Water Plan has identified surface water quality and erosion control as top priority resource concerns. These two priorities account for 33% of the phosphorus loading to Lake Emily. The Lake Emily Watershed Best Management Practices (BMP) Prioritization Project will provide GIS-based water quality analysis to assist the Pope Soil and Water Conservation District in determining effective locations for BMP implementation and will prioritize the areas from high to low for phosphorus, nitrogen, and sediment delivery from contributing runoff during rainfall events.
The City of Myrtle is an unsewered community in Freeborn County. Thirty-one of thirty-two properties are connected to a community straight pipe, which discharges raw sewage into Deer Creek, a tributary of the Cedar River and are classified as an imminent threat to public health (ITPHS). This project will provide cost-share assistance to 28 low income property owners, who are connected to the City of Myrtle community straight pipe, for construction of individual subsurface sewage treatment systems.
Pope Soil and Water Conservation District, partnered with Natural Resources Conservation Service staff and landowners, will install 22 targeted water and sediment control structures in two priority subwatersheds (Trappers Run and Minnewaska). These structures have the potential to reduce sediment load by 514 tons per year, and phosphorus by 440 pounds per year.
Two large, actively eroding gullies located a few miles apart in Amador Township are contributing tremendous loads of phosphorus and sediment to the St. Croix River. One gully (Gully A) includes a major agricultural gully, severe road erosion, and sediment deposits of a foot or more thick in a state park. The second gully (Gully B) is over 4 feet deep, adjacent to a road, and is an annual problem. Stabilizing these two gullies will greatly reduce the sediment and phosphorus loading to the St. Croix River, which will help meet the reduction goal of the Lake St.
Using a previous escarpment gully project as a model, the Chisago Soil and Water Conservation District will complete a similar inventory of actively eroding gullies along the Lower Sunrise River from the Kost Dam south to the confluence with the St. Croix, which includes the North Branch of the Sunrise, Hay Creek, and the Sunrise River main branch. There are major erosion issues along this stretch of river, no organized and efficient way to begin work in the area. The inventory report will provide the missing link.
The Chisago Soil and Water Conservation District has been successful in implementing Best Management Practices in certain targeted locations within the county, including the prioritized and assessed areas of Chisago City, Lindstrom, and Center City. However, there are many areas that want to implement conservation projects but aren't within targeted areas. This award will empower community partners, especially lake associations, to award grants for rain gardens, shoreline buffers, and other worthwhile projects to improve water quality.
The purpose of this Phase II Project is to advance the inventory process of the 103E drainage ditches where erosion, sediment, and/or nutrients are contributing substantially to water quality degradation, and prioritize sites for side water inlet control and/or buffer strip implementation.Through this project, Red Lake Watershed District, Red Lake County Ditch Authority, along with the Red Lake County SWCD, will be working together prioritizing county ditch systems (based upon water quality degradation and the amount of sediment loading that is occurring in the ditch systems), targeting whe
Red Lake County Soil and Water Conservation District (SWCD) has targeted water quality improvement projects to twelve sites in the Black River, Cyr Creek, and Red Lake River Sub-Watersheds of the Red Lake River Watershed. Data analysis obtained from a variety of models identified which sub-watersheds were contributing to impairments, highlighted which fields in those sub-watersheds were contributing the most sediment, and even showed specific locations in the field which were most vulnerable to erosion.
The Clearwater River from the Lost River to Beau Gerlot Creek and from the Lower Badger Creek to the Red Lake River is on the Total Maximum Daily Load Impaired Waters List for Turbidity. Red Lake County Soil and Water Conservation District (SWCD) has targeted five sites in the Terrebonne Creek, Beau Gerlot Creek, and Lower Badger Creek subwatersheds of the Clearwater River Watershed; with the potential of an additional five to ten more projects, based on data analysis obtained from a number of models.
The Faribault Soil and Water Conservation District will provide mini-grants to conservation-conscious community organizations who voluntarily construct best management practices that provide storage and treatment of stormwater runoff at its source.
The grant will use local data to develop stormwater planning options that prioritize, target, and measure the effectiveness of Best Management Practices and allow local city officials to make decisions on stormwater Best management Practices that reduce pollutants in the stormwatershed.
This project will use the Dakota County Soil and Water Conservation District's existing Conservation Initiative Funding program to provide technical assistance and monetary incentives for targeted, medium-sized projects such as raingardens, bioinfiltration, biofiltration, bioswales, shoreline stabilizations, and other best management practices (BMPs). Project proposals will be solicited from faith based organizations, homeowner associations, school organizations, lake associations, and others that own or manage large areas of land.
The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
The City of Glenwood Water Quality Assessment & Best Management Practice Prioritization Project will include an assessment and analysis of approximately 1,796 acres affecting water quality and contributing runoff to Lake Minnewaska. By implementing this water quality analysis and assessment of the City of Glenwood and sub watersheds, a reducing pollutants by 1,287 pounds per year of phosphorus and 203 tons per year of sediment.
The SWCD Local Capacity Services grant program provides funds to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas - Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The SWCD Local Capacity Services grant program provides funds to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas - Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The SWCD Local Capacity Services grant program provides funds to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas - Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The SWCD Local Capacity Services grant program provides funds to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas - Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The SWCD Local Capacity Services grant program provides funds to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas - Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
The Stearns County Soil and Water Conservation District will hire an Accelerated Water Quality Technician to focus on projects in the Middle Sauk area showing the greatest pollution reductions. After identifying and prioritizing targeted sites with the highest pollution potential, the Stearns County SWCD will begin surveys and designs and complete them in a timely fashion while current implementation funds are available. The accelerated survey and design in Stearns County will relieve our natural resources of the current strain put on them by the environment and land use.
The Lower Shakopee Creek has proportionally higher pollutant contributions than any other tributary in the Chippewa River Watershed, and lower than average implementation of conservation practices. Establishing relationships with agricultural landowners is critical for overcoming barriers to participation. In order to make measurable pollutant reductions, Chippewa River Watershed Project staff will increase one-to-one landowner contacts, program promotion, and Best Management Practice site identification.
The Rock County Soil and Water Conservation District/Land Management will build upon terrain analysis products developed by a Rock River Watershed 2013 BWSR grant and extend the data products to include additional water quality, Best Management Practices (BMP) suitability, BMP effectiveness, and BMP value datasets. This project will also extend this analysis to the remainder of Rock County, specifically Mud Creek, Beaver Creek and Split Rock Creek which are all listed for turbidity impairments.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure, and is not duplicated by any other source of funding. The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses. Funds are used for proven practices that prevent non-point source water pollution or solve existing water quality problems.
The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River Grand Rapids Watershed. Five lakes will be sampled, including Savanna, Shumway, Loon, Hay, and Washburn. Through this effort we will obtain information that will be useful in assessing the health of this watershed. This will be valuable in planning for future restoration and protection efforts that will ensure good water and environmental quality for Aitkin County.
Widseth Smith Nolting (WSN) will evaluate and recommend to Minnesota Pollution Control Agency (MPCA) groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration.
The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
The Wright County Soil and Water Conservation District (SWCD) will implement a targeted fertilizer application program in the Ann Lake watershed, allowing producers to measure soil fertility and apply needed fertilizer more accurately, preventing over-application and consequent runoff of nutrients, especially phosphorus, into surface waters. Phosphorus reduction will help meet the goals of the County's Water Management Plan and the TMDL implementation plan for Ann Lake.
This project is studying the response of certain aquifers to groundwater pumping. Research involves an aquifer test, which is an experiment where a well is pumped at a known, constant, pumping rate; changes in groundwater levels and stream flows in the areas around the aquifer test site are observed while the well is being pumped. These tests help us understand how groundwater flows between aquifers, which are underground rock and sand layers that hold water.
The DNR is working with local communities and an interagency team to define, prioritize, and establish groundwater management areas in Minnesota. Groundwater management areas will have increased data collection and monitoring that allow the state and local communities to understand water supplies, uses, limitations, and threats to natural resources that depend on groundwater. This information will support detailed aquifer protection plans that ensure equitable and sustainable groundwater and drinking water use for the future.