The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to construct, calibrate, and validate a watershed model using the Hydrological Simulation Program FORTRAN (HSPF) model for the Upper/Lower Red Lake Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.