Objective 1: By the end of project year 1, an Adult Immersion Cohort 2 will be developed by Waasabiik Ojibwemotaadiwin Immersion Program. Objective 2: By the end of project year 1, 20 Adult language learners from Red Lake will participate in an Adult Immersion Cohort provided by Waasabiik Ojibwemotaadiwin Immersion Program. Objective 3: By the end of project year 1, 150 community language learners will participate in either in-person and/or online community language and cultural initiatives provided by Waasabiik Ojibwemotaadiwin Immersion Program.
Objective 1: By the end of project year 1, curriculum materials will be developed and made available to community language learners Object 2: By the end of project year 1, 150 community language learners will participate in either in-person and/or online community language and cultural initiatives provided by Waasabiik Ojibwemotaadiwin Immersion Program
Objective 1: By the end of project year 1, curriculum materials will be developed and made available to community language learners Objective 2: By the end of project year 1, 250 community language learners will participate in either in-person and/or online community language and cultural initiatives provided by Waasabiik Ojibwemotaadiwin Immersion Program. Objective 3: By the end of project year 1, 150 community language learners will participate in a Ojibwe language Immersion camp
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to construct, calibrate, and validate a watershed model using the Hydrological Simulation Program FORTRAN (HSPF) model for the Upper/Lower Red Lake Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
To support Ojibwe language learners on the Red Lake Nation through various platforms: community language efforts, cultural events, Ojibwe language Immersion camp and online.
Partner Organizations: Winona County Historical Society and Theatre du Mississippiona
Winona County Historical Society and Theatre du Mississippi will partner to produce a new interpretive program for the Historic William Bunnell House in 2015. They will conduct research to produce an hour-long script based on the lives of families who lived in the house and the period they lived there. This new program will create a purpose for a house museum which has been languishing.
To provide a variety of programming at the Winona County Fair that preserves and promotes Minnesota's history and cultural heritage. Art demonstrations will feature painting, watercolor, drawing, oils, spinning, weaving, and quilting. Visitors will be able to view antique tractors and learn about their history and restoration process. Children can watch a marionette show and learn about ventriloquism. The fair will feature a bluegrass band and a dog sledding display.
Minnesota Trout Unlimited, the Minnesota Land Trust, and The Nature Conservancy will combine their expertise within 12 targeted watersheds to increase the resilience of remnant populations of brook trout unique to Southeast Minnesota. We will protect 535 acres and restore/enhance 95 acres of instream and adjacent upland habitats to address stream degradation (floodplains, gullies, slopes, and bluffs), slow runoff, increase infiltration, and keep aquatic habitat productive.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
To hire qualified professionals to complete re-roofing and preventative masonry work on the Second National Bank, listed in the National Register of Historic Places.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
This grant will fund about 80 project in six sub-watersheds (Headwaters of the Middle & South Branch, Money Creek, Headwaters of Upper Iowa River, Mill Creek, south Fork Root River, and Carey Creek). Projects to include grassed waterways, water and sediment control basins, grade stabilization structures, livestock waste projects, streambank projects and cover crops. Funding will also support staff time for project development and technical assistance for the cost-share projects.
This grant will fund an expected 44 projects in 4 subwatersheds (South Fork Root River, Crooked Creek, Rush-Pine and portions of the headwaters of the Middle and South Branch Root) and 2 DWSMAS (Chatfield and Utica). Projects include grassed waterways, WASCOBs, grade stabilization structures and cover crops, plus field walkovers, project development, and technical assistance. The anticipated sediment reduction from this work will be 2,285.5 tons, or 2.2% of the 10-year goal for the entire planning area.